Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure and mechanical properties on medium carbon pseudo-eutectoid steel at different warm rolling temperatures
Authors: Hou Jiteng Cao Kuo Feng Yunli 
Unit: Metallurgical Energy Source Academy  North China University of Science and Technology 
KeyWords: medium carbon pseudo-eutectoid steel  warm rolling  multi-scale layered hetero structure  structural evolution mechanical properties 
ClassificationCode:TG142
year,vol(issue):pagenumber:2024,49(4):118-124
Abstract:

In order to strengthen the mechanical properties of plain carbon steel, 45 steel with pseudo-eutectoid structure after pretreatment was warm rolled at different temperatures (450,550 and 650 ℃), and the microstructure evolution and mechanical properties of medium carbon pseudo-eutectoid steel during the warm rolling process were studied by means of scanning electron microscope, electron backscattered diffraction analysis and tensile test. The results show that the microstructure of ferrite and pearlite obtained after the warm rolling of test steel is multi-scale layered distribution. With the increasing of warm rolling temperature, the cementite lamellae gradually fuses, spheroidizes, grows up and distributes evenly. When the warm rolling temperature increases from 450 ℃ to 650 ℃, the average grain size increases from 0.34 μm to 0.59 μm, the tensile strength decreases from 1424 MPa to 1013 MPa, and the elongation increases from 5.5% to 7.0%. When the warm rolling temperature is 550 ℃, the strength and plasticity achieve the optimal combination, and the product of strength and plasticity is the highest, which is 8350 MPa·%. This research results show that the mechanical properties of plain carbon steel can be strengthened to a certain extent by constructing multi-scale layered heterostructures.

Funds:
国家自然科学基金资助项目(51974134);河北省科技重大专项(21281008Z)
AuthorIntro:
作者简介:侯冀腾(2000-),男,硕士研究生 E-mail:2286298336@qq.com 通信作者:冯运莉(1965-),女,博士,教授 E-mail:tsfengyl@163.com
Reference:

[1]Lu J, Yu H, Yang S F. Mechanical behavior of multistage heattreated HSLA steel based on examinations of microstructural evolution[J]. Materials Science and Engineering: A, 2021, 803: 140493.


 

[2]Pamnani R, Karthik V, Jayakumar T, et al. Evaluation of mechanical properties across micro alloyed HSLA steel weld joints using automated ball indentation[J]. Materials Science and Engineering: A, 2016, 651: 214-223.

 

[3]Lu J, Yu H, Duan X N, et al. Investigation of microstructural evolution and bainite transformation kinetics of multiphase steel[J]. Materials Science and Engineering: A, 2020, 774: 138868.

 

[4]顾恬玮, 彭建. 基于自然的碳达峰、碳中和解决方案:关键议题[J]. 生态学报, 2023, 43(9): 3384-3391.

 

Gu T W,Peng J.Naturebased solutions for carbon peaking and carbon neutrality goals: Key issues[J].Acta Ecologica Sinica,2023,43(9): 3384-3391.

 

[5]宛刚. 中国钢铁工业绿色发展工程科技战略及对策[J]. 化工管理, 2018,(27): 108-109.

 

Yuan G. Engineering science and technology strategy and countermeasures for green development of China′s iron and steel industry[J]. Chemical Industry Management, 2018,(27): 108-109.

 

[6]Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nature Reviews Materials, 2016, 1(5): 16019.

 

[7]韩刚. 多相组织高强度低合金钢纳米Cu析出相演化规律及其对强塑性影响的研究[D]. 北京:北京科技大学, 2021.

 

Han G. Study on the Evolution of Nano Cu Precipitates in High Strength Low Alloy Steel with Multiphase Structure and Its Effect on Strength and Plasticity[D]. Beijing: University of Science and Technology Beijing, 2021.

 

[8]李鹏飞. 高强度低合金钢织构形成及其对力学性能的影响[D]. 哈尔滨:哈尔滨工程大学, 2019.

 

Li P F.Texture Formation and Its Effect on the Mechanical Properties of High Strength Low Alloy Steel[D]. Harbin:Harbin Engineering University, 2019.

 

[9]Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafinegrain strength with coarsegrain ductility[J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501-14505.

 

[10]Zhu Y T, Wu X L. Perspective on heterodeformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7(10): 393-398.

 

[11]Li Z K, Fang X T, Wang Y F, et al. Tuning heterostructures with powder metallurgy for high synergistic strengthening and heterodeformation induced hardening[J]. Materials Science and Engineering: A, 2020, 777: 139074.

 

[12]Li Z K, Liu Y J, Wang Y F, et al. Hierarchical strain band formation and mechanical behavior of a heterostructured dualphase material[J]. Journal of Materials Science & Technology, 2023, 162: 25-37.

 

[13]Fang X T, He G Z, Zheng C, et al. Effect of heterostructure and heterodeformation induced hardening on the strength and ductility of brass[J]. Acta Materialia, 2020, 186: 644-655.

 

[14]Lu K. Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345: 1455-1456.

 

[15]Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197-7201.

 

[16]Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure[J]. Materials Research Letters, 2014, 2(4): 185-191.

 

[17]Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nanograined copper[J]. Science, 2011, 331(6024): 1587-1590.

 

[18]Chen A Y, Liu J B, Wang H T, et al. Gradient twinned 304 stainless steels for high strength and high ductility[J]. Materials Science and Engineering: A, 2016, 667: 179-188.

 

 

 

[19]Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafinegrained ferrite/martensite dualphase steels and the effect of aging[J]. Acta Materialia, 2011, 59(2): 658-670.

 

[20]Li Z, Pradeep K G, Deng Y, et al. Metastable highentropy dualphase alloys overcome the strengthductility tradeoff[J]. Nature, 2016, 534(7606): 227-230.

 

[21]Park K, Nishiyama M, Nakada N, et al. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dualphase steel[J]. Materials Science and Engineering: A, 2014, 604: 135-141.

 

[22]郭鹤, 张玉华. 基于MMC准则的双相高强钢HC820/1180DPD+ Z断裂失效模型分析[J]. 锻压技术, 2023, 48(10): 235-244.

 

Guo H,Zhang Y H. Analysis on fracture failure model for dualphase highstrength steel HC820/1180DPD+Z based on MMC criterion[J]. Forging & Stamping Technology,2023,48(10):235-244.

 

[23]Sawangrat C, Kato S, Orlov D, et al. Harmonicstructured copper: Performance and proof of fabrication concept based on severe plastic deformation of powders[J]. Journal of Materials Science, 2014, 49(19): 6579-6585.

 

[24]Zhang Z, Vajpai S K, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics[J]. Materials Science and Engineering: A, 2014, 598: 106-113.

 

[25]Vajpai S K, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution[J]. Metallurgical and Materials Transactions A, 2015, 46(2): 903-914.

 

[26]Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912-915.

 

[27]Han B Q, Huang J Y, Zhu Y T, et al. Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys[J]. Acta Materialia, 2006, 54(11): 3015-3024.

 

[28]Han B Q, Lavernia E J, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys[J]. Metallurgical and Materials Transactions A, 2005, 36(4): 957-965.

 

[29]Zhao Y, Topping T, Bingert J F, et al. High tensile ductility and strength in bulk nanostructured nickel[J]. Advanced Materials, 2008, 20(16): 3028-3033.

 

[30]Zhang D, Zhang M, Cao K, et al. Effect of annealing time on microstructure stability and mechanical behavior of ferritecementite steel with multiscale lamellar structure[J]. Metallurgical and Materials Transactions B, 2021, 52(2): 1023-1033.

 

[31]喻异双. 高强度低合金钢非均质组织调控及强韧性机理研究[D]. 北京:北京科技大学, 2022.

 

Yu Y S. Mechanism of Heterogeneous Microstructure Regulation and Toughness of Highstrength Lowalloy Steel[D]. Beijing:University of Science and Technology Beijing, 2022.

 

[32]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

 

[33]Zhang D M, Zhang M H, Lin R, et al. Strengthening and strain hardening mechanisms of a plain medium carbon steel by multiscale lamellar structures[J]. Materials Science and Engineering: A, 2021, 827: 142091.

 

[34]Zhang S L, Sun X J, Dong H. Effect of deformation on the evolution of spheroidization for the ultra high carbon steel[J]. Materials Science and Engineering: A, 2006, 432(1): 324-332.

 

[35]Tanaka K, Takamiya H, Iwata N, et al. Microstructure and bond strength of steels using lowCrsubstituted cementite foil[J]. ISIJ International, 2011, 51(3): 423-428.

 

[36]李志杰. 碳素钢温塑性成形过程组织动态演变及力学行为研究[D]. 秦皇岛:燕山大学, 2013.

 

Li Z J. Study on Microstructure Dynamic Evolution and Mechanical Behavior of Carbon Steel During Thermoplastic Forming[D]. Qinhuangdao:Yanshan University, 2013.

 

[37]田亚强, 赵志浩, 杨子旋, 等. 温轧温度对中碳钢组织与力学性能的影响[J]. 金属热处理, 2022, 47(6): 19-25.

 

Tian Y Q, Zhao Z H, Yang Z X,et al. Effect of warm rolling temperature on microstructure and mechanical properties of medium carbon steel[J]. Heat Treatment of Metals, 2022, 47(6): 19-25.

 

[38]Ma E, Wu X L. Tailoring heterogeneities in highentropy alloys to promote strengthductility synergy[J]. Nature Communications, 2019, 10(1): 5623.

 

[39]Ning J L, Zhang Y T, Huang L, et al. Stabilized uniform deformation in a highstrength ferritecementite steel with multiscale lamellar structure[J]. Materials & Design, 2017, 120: 280-290.

 

[40]Min X, Kimura Y, Kimura T, et al. Delamination toughening assisted by phosphorus in mediumcarbon lowalloy steels with ultrafine elongated grain structures[J]. Materials Science and Engineering: A, 2016, 649: 135-145.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com