[1]李震,沙潜毅,李金达,等.沙柳颗粒在不同破碎程度下致密成型的拱效应[J].锻压技术,2023,48(2):111-117.
Li Z, Sha Q Y, Li J D, et al. Arch effect for Salix granules dense forming under different breakage degrees[J]. Forging & Stamping Technology, 2023,48(2):111-117.
[2]沈鸿翔. 饲草嵌套式环模压块机模套的优化设计与试验研究[D]. 北京:中国农业大学,2018.
Shen H X. Optimization Design and Experiment Study on the Die Sleeves of the Nested Ringdie Structure of Forage Briquetting Machine[D]. Beijing: China Agricultural University, 2018.
[3]于世伟,周剑,张炜,等. 粉末高速压制成形件密度影响因素分析[J]. 中国机械工程,2018,29(9):1120-1126.
Yu S W, Zhou J, Zhang W, et al. Analysis of influence factors for density of compressed powder products during high velocity compaction[J]. China Mechanical Engineering, 2018, 29(9): 1120-1126.
[4]孟凡净,刘华博,花少震,等. 金属粉末单轴压制过程中的摩擦机制及力学特性分析[J]. 应用力学学报,2021,38(3):1286-1292.
Meng F J, Liu H B, Hua S Z, et al. Analysis of frictional mechanism and mechanical characteristics of metal powder in the process of uniaxial pressing[J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 1286-1292.
[5]Xin X F, Wang X F, Lei Z W, et al. Simulation study of singlechannel closed cold compression molding for straw biomass[J]. Journal of Biobassed Materials and Bioenergy, 2019, 13(3): 329-337.
[6]孙启新,陈书法,董玉平. 秸秆类生物质成型热黏塑性本构模型构建[J]. 农业工程学报,2015,31(8):221-226.
Sun Q X, Chen S F, Dong Y P. Establishment of thermo viscoplastic constitutive model for straw biomass briquetting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 221-226.
[7]Yin Y T, Wang L Y, Cai J J. Study on influence factors to the biomass compression process[J]. Applied Mechanics & Materials, 2011, 71-78: 2939-2943.
[8]孙其诚,金峰,王光谦,等. 二维颗粒体系单轴压缩形成的力链结构[J]. 物理学报,2010,59(1):30-37.
Sun Q C, Jin F, Wang G Q, et al. Force chains in a uniaxially compressed static granular matter in 2D[J]. Acta Physica Sinica, 2010, 59(1): 30-37.
[9]Meng F J, Liu H B, Hua S E, et al. Force chain characteristics of dense particles sheared between parallelplate friction system[J]. Results in Physics, 2021, 25: 104328-104339.
[10]Xu Z Y, Meng F J. Investigation of the flow and force chain characteristics of metal powder in high- velocity compaction based on a discrete element method[J].Journal of the Korean Physical Society, 2021, 79(5): 455-467.
[11]张炜, 萧伟健, 袁传牛, 等. 离散元法铁粉末压制中粒径分布对力链演化机制的影响[J]. 力学学报, 2022, 54(9): 2489-2500.
Zhang W, Xiao W J, Yuan C N,et al.Effect of particle size distribution on force chain evolution mechanism in iron powder compaction by discrete element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022,54(9): 2489-2500.
[12]李震,高雨航,刘彭,等. 沙柳细枝颗粒致密成型过程中力链演变的离散元研究[J]. 太阳能学报,2019,40(11): 3186-3195.
Li Z, Gao Y H, Liu P, et al. Discrete element study on evolution of forcechain during Salix grains dense molding[J]. Acta Energiae Solaris Sinica, 2019, 40(11): 3186-3195.
[13]杜海君,雷霆,张永安,等.苜蓿振动压缩成型过程中的力链演变[J].农业工程学报,2022,38(2):33-40.
Du H J, Lei T, Zhang Y A, et al. Evolution of force chain during vibration compression molding of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022,38(2):33-40.
[14]冯启飞. 基于离散元理论的旋回破碎机性能分析及腔型优化[D]. 长沙:湖南大学,2014.
Feng Q F. The Crushing Performance Analysis and Chamber Optimization of Qyratory Crusher Based on the Diacrete Element Method[D]. Changsha: Hunan University, 2014.
[15]Thakur S C, Morrissey J P, Sun J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elastoplastic contact model[J]. Granular Matter, 2014, 16(3): 383-400.
|