Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Establishment and modification on Zerilli-Armstrong constitutive model for 18CrNiMo7-6 alloy steel
Authors: Guo Ziyang1  Wang Wei1 2  Ma Shibo1 2  Yan Huajun1 2  Mu Zhenkai1 2 
Unit: 1.School of Materials Science and Engineering  Hebei University of Science and Technology   2.Hebei Key Laboratory of Material Nearnet Forming Technology  Hebei University of Science and Technology 
KeyWords: 18CrNiMo7-6 alloy steel  Zerilli-Armstrong constitutive model  thermal deformation behavior  isothermal compression test  model modification 
ClassificationCode:TG386.2
year,vol(issue):pagenumber:2024,49(4):235-241
Abstract:

 For 18CrNiMo7-6 alloy steel, the isothermal compression tests were conducted under the conditions of the strain rate of 0.001-1 s-1 and the deformation temperature of 700-1000 ℃ by Gleeble-3500 thermal simulation test machine, and the true stress-true strain curves of 18CrNiMo7-6 alloy steel under different conditions were obtained. Then, the thermal deformation behavior of 18CrNiMo7-6 alloy steel was analyzed, and the Zerilli-Armstrong (Z-A) constitutive model of 18CrNiMo7-6 alloy steel was constructed to describe its thermal deformation behavior. By comparing and analysing the predicted value of Z-A constitutive model with the test value of isothermal compression test, it was found that the linear correlation coefficient between the predicted and test values was 0.9750, and the average relative error was 8.1792%. In order to further improve the prediction accuracy of the model, the fifth-order polynomial of strain was used to describe the material parameters related to strain in Z-A constitutive model, and the model was modified. The linear correlation coefficient between the predicted value of the modified Z-A constitutive model and the test value was 0.9853, and the average relative error was 5.5358%, which effectively improved the prediction accuracy of the constitutive model.

Funds:
国家自然科学基金资助项目(52205353);河北省自然科学基金资助项目(E2021208025,E2020208044)
AuthorIntro:
作者简介:郭自洋(1998-),男,硕士研究生 E-mail:15613314604@163.com 通信作者:王伟(1986-),男,博士,副教授 E-mail:18631175658@163.com
Reference:

 [1]Wu J Z, Wei P T, Liu H J, et al. Effect of shot peening intensity on surface integrity of 18CrNiMo7-6 steel[J]. Surface and Coatings Technology, 2021, 421: 127194.


 


[2]Xu G T, Luo J, Lu F Q, et al. Characterization of fracture toughness for surfacemodified layer of 18CrNiMo7-6 alloy steel after carburizing heat treatment by indentation method[J]. Engineering Fracture Mechanics, 2022, 269: 108508.


 


[3]Qin S W, Wang L X, Di L Y, et al. Effect of carburizing process on bending fatigue performance of notched parts of 18CrNiMo7-6 alloy steel[J]. Engineering Failure Analysis, 2023, 147: 107161.


 


[4]Krawczyk J, Pawowski B, Baa P. Banded microstructure in forged 18CrNiMo7-6 steel[J]. Metallurgy and Foundry Engineering, 2009, 35(1): 45-53.


 


[5]Fu P, Jiang C. Residual stress relaxation and microstructural development of the surface layer of 18CrNiMo7-6 steel after shot peening during isothermal annealing[J]. Materials & Design, 2014, 56: 1034-1038.


 


[6]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023, 24: 6334-6347.


 


[7]吴少洋, 张建伟, 卢凤强, . 18CrNiMo7-6合金钢JC损伤模型失效参数研究[J]. 郑州大学学报:工学版, 2023, 44(1): 70-76.


 


Wu S Y, Zhang J W, Lu F Q, et al. Investigation on failure parameters of JC damage model of 18CrNiMo7-6 alloy steel [J]. Journal of Zhengzhou University:Engineering and Technology Edition, 2023, 44(1): 70-76.


 


[8]徐广涛, 卢凤强, 吴少洋, . 18CrNiMo7-6合金钢的动态本构参数确定[J]. 热加工工艺, 2023, 52(8): 49-53.


 


Xu G T, Lu F Q, Wu S Y, et al. Determination of dynamic constitutive parameters for 18CrNiMo7-6 alloy steel [J]. Hot Working Technology, 2023, 52(8): 49-53.


 


[9]谢一夔, 王启丞, 陈子坤, . 18CrNiMo7-6齿轮钢的热变形行为及组织演变规律[J]. 金属热处理, 2023, 48(2): 103-109.


 


Xie Y KWang Q C, Chen Z K, et al. Hot deformation behavior and microstructure evolution of 18CrNiMo7-6 gear steel [J]. Heat Treatment of Metals, 2023, 48(2): 103-109.


 


[10]王刚, 宋建, 张建伟, . 基于多晶体模型的18CrNiMo7-6合金钢本构参数确定[J]. 郑州大学学报:工学版, 2020, 41(2): 38-43.


 


Wang G, Song J, Zhang J W, et al. Constitutive parameters of 18CrNiMo7-6 alloy determined by a polycrystalline model [J]. Journal of Zhengzhou University:Engineering and Technology Edition, 2020, 41(2): 38-43.


 


[11]Zhan H Y, Wang G, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the JohnsonCook and modified ZerilliArmstrong models[J]. Materials Science and Engineering: A, 2014, 612: 71-79.


 


[12]He A, Xie G L, Zhang H L, et al. A modified ZerilliArmstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel[J]. Materials & Design, 2014, 56: 122-127.


 


[13]Gurusamy M M, Rao B C. On the performance of modified ZerilliArmstrong constitutive model in simulating the metalcutting process[J]. Journal of Manufacturing Processes, 2017, 28: 253-265.


 


[14]Cai J, Wang K S, Han Y Y. A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrheniustype constitutive models to predict hightemperature flow behavior of Ti-6Al-4V alloy in α+β phase[J]. High Temperature Materials and Processes, 2016, 35(3): 297-307.


 


[15]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrheniustype constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science, 2009, 47(2): 568-576.


 


[16]王伟, 王波, 闫华军, . 基于等温压缩试验的20Cr2Ni4AJohnsonCook本构模型及热加工图[J]. 热加工工艺, 2020, 49(13): 103-108,119.


 


Wang W, Wang B, Yan H J, et al. JohnsonCook constitutive model and hot processing map of 20Cr2Ni4A steel based on isothermal compression tests [J]. Hot Working Technology, 2020, 49(13): 103-108,119.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com