Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Low constraint fluid-assisted forming law for GLARE complex section components
Authors: Wang Yao1 2 3 4  Niu Xuchang1  Cheng E1  Zhang Yunhua5  Zheng Sifa2  Zhao Libin1 4 6  Hu Ning1 3 4 
Unit: 1. School of Mechanical Engineering  Hebei University of Technology  Tianjin 300401  China   2. Suzhou Automotive Research Institute (Xiangcheng)  Tsinghua University  Suzhou 215134  China   3. State Key Laboratory of Reliability and Intelligence Electrical Equipment  Hebei University of Technology Tianjin 300401  China    4. Key Laboratory of Advanced Intelligent Protective Equipment Technology  Ministry of Education  Hebei University of Technology    Tianjin 300401  China  5. Henan Benjie Technology Co. Ltd.  Zhengzhou 450003  China  6. Key Laboratory of Hebei   Province on Scale-span Intelligent Equipment Technology  Hebei University of Technology  Tianjin 300401  China 
KeyWords: GLARE  low constraint  fluid-assisted forming  complex features  failure form 
ClassificationCode:TB333
year,vol(issue):pagenumber:2024,49(5):24-35
Abstract:

 Abstract: 

For a new generation of aerospace manufacturing material Glass Fiber Reinforced Aluminum alloy Laminates(GLARE), the irregular box-shaped parts with variable curvature and curved surface characteristics were prepared by using low-constraint GLARE as sheet metal, and the experiment was conducted by the fluid-assisted forming process to explore the influence laws of blank holding force, hydraulic pressure and its loading path on the forming quality of specimen. Furthermore, according to the failure mechanism analysis on the parts, the best process parameters for the forming were obtained, and combined with the optimized hydraulic pressure loading path, the forming law of complex components was obtained. In addition, the failure forms of irregular box-shaped parts with different forming heights were analyzed. The results show that increasing the blank holding force and hydraulic pressure within a certain range is beneficial to the forming of parts, and adopting the path of larger hydraulic pressure loading speed and holding pressure improves the forming quality of parts.
 
Funds:
基金项目:国家自然科学基金资助项目(52005153);河北省自然科学基金资助项目(E2023202183);中央引导地方科技发展项目(236Z1903G,206Z1803G);天津市“项目+团队”重点培养专项(XC202052);河北省重点研发计划项目(23311812D)
AuthorIntro:
作者简介:王耀(1986-),男,博士,副教授 E-mail:bhwy2014@126.com
Reference:

 


 


[1]郭宏, 王耀, 宋国鹏, 等. 超薄微尺度碳纤维/TA1复合层板的拉伸断裂行为
[J]. 锻压技术, 2022, 47(10): 72-81.

 

Guo H, Wang Y, Song G P, et al. Tensile fracture behavior for ultrathin micro scale carbon fibre/TA1 composite laminates
[J]. Forging & Stamping Technology, 2022, 47 (10): 72-81.

 


[2]Mamalis D, Obande W, Koutsos V, et al. Novel thermoplastic fibre-metal laminates manufactured by vacuum resin infusion: The effect of surface treatments on interfacial bonding-science direct
[J]. Materials & Design, 2019, 162: 331-344.

 


[3]王耀, 郭宏, 叶晓凯, 等. TA1/CFRP燃料电池双极板微流道充液成形性能及尺寸效应
[J]. 锻压技术, 2023, 48(5): 16-24.

 

Wang Y, Guo H, Ye X K, et al. Hydro-formability and scale effect of TA1/CFRP fuel cell bipolar plate microchannels
[J]. Forging & Stamping Technology, 2023, 48 (5): 16-24.

 


[4]Heggemann T, Homberg W. Deep drawing of fiber metal laminates for automotive lightweight structures
[J]. Composite Structures, 2019, 216(5): 53-57.

 


[5]王沁宇, 卓家桂, 李新顶, 等. 纤维/金属网增强层板低速冲击损伤机理和演化
[J]. 力学季刊, 2023, 44(1): 160-171.

 

Wang Q Y, Zhuo J G, Li X D, et al. Damage mechanism and evolution of fiber/metal wire reinforced plastic laminate under low-velocity impact
[J]. Chinese Quarterly of Mechanics, 2023, 44 (1): 160-171.

 


[6]Lin Y Y, Liu C, Li H G, et al. Interlaminar failure behavior of GLARE laminates under double beam five-point-bending load
[J]. Composite Structures, 2018, 201: 79-85.

 


[7]亓昌, 付利荣, 刘海涛, 等. 热塑性纤维金属层板抗冲击性能研究与优化
[J]. 重庆理工大学学报:自然科学, 2023, 37(4): 115-122.

 

Qi C, Fu L R, Liu H T, et al. Research and optimization of impact resistance for thermoplastic fiber metal laminates
[J]. Journal of Chongqing University of Technology:Natural Science, 2023, 37 (4): 115-122.

 


[8]Xiang J M, Lu Y, Wang C Z, et al. Investigation on the low-velocity impact behaviour of non-symmetric FMLs-experimental and numerical methods
[J]. International Journal of Crashworthiness, 2022, 27(1): 128-146.

 


[9]陈一哲, 范宏德, 王祎纯, 等. 车用纤维金属层板构件冲压变形行为研究
[J]. 汽车工程, 2023, 45(3): 517-525.

 

Chen Y Z, Fan H D, Wang Y C, et al. Research on stamping deformation of automotive fiber metal laminate
[J]. Automotive Engineering, 2023, 45 (3): 517-525.

 


[10]王耀, 曹佳华, 杨超, 等. 超混杂纤维金属层板成形方法研究进展
[J]. 精密成形工程, 2023, 15(3): 19-35.

 

Wang Y, Cao J H, Yang C, et al. Research progress in forming methods of super hybrid fiber metal laminates
[J]. Journal of Netshape Forming Eegineering, 2023, 15 (3): 19-35.

 


[11]Kavitha K, Vijayan R, Sathishkumar T. Fibre-metal laminates: A review of reinforcement and formability characteristics
[J]. Materials Today: Proceedings, 2020, 22: 601-605.

 


[12]Wanhill R J H. GLARE: A versatile fibre metal laminate (FML) concept
[J]. Aerospace Materials and Material Technologies, 2017, 1: 291-307.

 


[13]Li H G,Tian J M, Fei W, et al. Spring-back and failure characteristics of roll bending of GLARE laminates
[J]. Materials Research Express, 2019, 6(8): 0865b2.

 


[14]Neto D M, Oliveira M C, Santos A D, et al. Influence of boundary conditions on the prediction of springback and wrinkling in sheet metal forming
[J]. International Journal of Mechanical Sciences, 2017, 122: 244-254.

 


[15]Cui X H, Du Z H, Xiao A, et al. Electromagnetic partitioning forming and springback control in the fabrication of curved parts
[J]. Journal of Materials Processing Technology, 2021, 288: 116889.

 


[16]Abeyrathna B, Ghanei S, Rolfe B, et al. Springback and end flare compensation in flexible roll forming
[J]. IOP Conference Series: Materials Science and Engineering, 2020, 967(1): 012048.

 


[17]Sherkatghanad E, Lang L, Liu S, et al. Innovative approach to mass production of fiber metal laminate sheets
[J]. Materials and Manufacturing Processes, 2018, 33(5): 552-563.

 


[18]Reddy P V, Reddy B V, Ramulu P J. Evolution of hydroforming technologies and its applications-A review
[J]. Journal of Advanced Manufacturing Systems, 2020, 19(4): 737-780.

 


[19]Hwang Y M, Manabe K I. Latest hydroforming technology of metallictubes and sheets
[J]. Metals-Open Access Metallurgy Journal, 2021, 11(9): 1360.

 


[20]王耀, 宋国鹏, 杨超, 等. 微尺度纤维/金属混杂层板的低约束拉伸变形性能
[J]. 锻压技术, 2022, 47(10): 63-71.

 

Wang Y, Song G P, Yang C, et al. Low constraint tensile deformation properties on micro scale fiber/metal hybrid laminates
[J]. Forging & Stamping Technology, 2022, 47 (10): 63-71.

 


[21]Li L, Lang L H, Hamza B, et al. Effect of hydroforming process on the formability of fiber metal laminates using semi-cured preparation
[J].The International Journal of Advanced Manufacturing Technology, 2020, 107: 3909-3920.

 


[22]Blala H, Lang L H, Khan S, et al. A comparative study on the GLARE stamp forming behavior using cured and non-cured preparation followed by hot-pressing
[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(5): 1461-1473.

 


[23]Sinke J. Manufacturing of GLARE parts and structures
[J]. Applied composite materials, 2003, 10: 293-305.

 


[24]Alderliesten R C, Homan J J. Fatigue and damage tolerance issues of Glare in aircraft structures
[J]. International Journal of Fatigue, 2006, 28(10): 1116-1123.

 


[25]Gisario A, Barletta M. Laser forming of glass laminate aluminium reinforced epoxy (GLARE): On the role of mechanical, physical and chemical interactions in the multi-layers material
[J]. Optics and Lasers in Engineering, 2018, 110(11): 364-376.

 


[26]Blala H, Lang L, Sherkatghanad E, et al. An investigation into process parameters effect on the formability of GLARE materials using stamp forming
[J]. Applied Composite Materials, 2020, 26(5-6): 1423-1436.

 


[27]Schubert F, Minar N K, Sause M, et al.Thermoplastic fiber metal laminates for automated production
[J]. Lightweight Design worldwide, 2019, 12(4): 12-17.

 


[28]Jin K, Chen K, Luo X Y, et al. Fatigue crack growth and delamination mechanisms of Ti/CFRP fibre metal laminates at high temperatures
[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(6): 1115-1125.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com