Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Cold stamping performance for complex components of ultra-high strength steel QP1180
Authors: Li Bing1 Xu Feiyue1 Zhang Peng1 Zhang Hongxia1 Wang Min1 2 
Unit: 1. School of Materials Science and Engineering  Hubei University of Automobile Technology Shiyan 442002  China   2. Hubei Longzhong Laboratory  Xiangyang 441000  China 
KeyWords: ultra-high strength steel QP1180 forming performance cold stamping stress-induced reinforcement ductile fracture 
ClassificationCode:TG386
year,vol(issue):pagenumber:2024,49(5):45-52
Abstract:
For QP1180 steel automobile B-pillar, its cold stamping performance was investigated by finite element simulation, stamping experiments, scanning electron microscopy and other methods. The simulation results indicate that the maximum thinning rate of main parts for the part is 12.7% under the blank holder force of 1400 kN, the friction coefficient of 0.17 and the stamping rate of 500 mm·s-1, with good formability. The experimental results show that the cold stamping parts have no wrinkling or cracking defects, and the surface forming quality is excellent. After forming, the tensile strength at position D of the part reaches 1343 MPa, with an elongation of 24.5% and a strong plastic product of 32.9 GPa·%, demonstrating a high capacity of strain-induced reinforcement. At position E, the strong plastic product reaches 30.2 GPa·%, while at position F, the tensile strength reaches 1454 MPa and the strong plastic product is 22.1 GPa·%. The micro-hardness at three positions reaches 410 HV. In the area with larger deformation of part, the residual austenite content at position F is significantly lower than that at position D, and the martensite content is higher. The fracture morphologies in three positions belong to the ductile fracture, with large and deep dimples at position D, indicating good plasticity. The size of dimple at position E decreases, and the depth of dimple becomes shallower. At position F, there are obvious tearing edges and a decrease in material plasticity.
 
Funds:
基金项目:湖北省重点研发项目(2021BAB019);湖北隆中实验室自主创新项目(2022ZZ-30);湖北省科技重大专项(2022AAA001)
AuthorIntro:
作者简介:李兵(1981-),男,硕士,副教授 E-mail: libing42158823@163.com
Reference:

 
[1]李伟, 贾兴祺, 金学军.高强韧QPT工艺的先进钢组织调控和强韧化研究进展
[J].金属学报, 2022, 58(4):444-456.


 

Li W, Jia X Q, Jin X J. Research progress of microstructure control and strengthening mechanism of QPT process advanced steel with high strength and toughness
[J]. Acta Metallurgica Sinica,2022, 58(4):444-456.

 


[2]李冰,陈星合,付博文, 等.7075铝合金线材连续流变挤压与双级时效热处理研究
[J].稀有金属, 2023, 47(9):1195-1203.

 

Li B, Chen X H, Fu B W, et al. Continuous rheo-extrusion and double aging heat treatment of 7075 aluminum alloy wire
[J]. Chinese Journal of Rare Metals, 2023, 47(9):1195-1203.

 


[3]唐远寿, 司宇, 徐正萌, 等.超高强度钢在汽车轻量化中的应用及研究进展
[J].金属热处理, 2023,48(10):247-254.

 

Tang Y S, Si Y, Xu Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweight
[J]. Heat Treatment of Metals,2023,48(10):247-254.

 


[4]牛艳娥, 赵芃沛, 李宁, 等.国内外超高强度钢的研究现状及应用
[J].兵器装备工程学报, 2021, 42(7):274-279.

 

Niu Y E, Zhao P P, Li N, et al. Research status and application of ultra-high strength steel at home and abroad
[J]. Journal of Ordnance Equipment Engineering, 2021, 42(7):274-279.

 


[5]武俊男,张津宁,刘凯悦,等.热冲压成形技术在车身开发中的应用
[J].天津科技,2023,50(7):95-100.

 

Wu J N, Zhang J N, Liu K Y, et al. Application of hot stamping technology in BIW
[J]. Tianjin Science & Technology, 2023,50(7):95-100.

 


[6]裴永生, 盛天放, 杨园超, 等.QP980超高强钢翻边性能分析
[J].塑性工程学报, 2019, 26(6):50-54.

 

Pei Y S, Sheng T F, Yang Y C, et al. Analysis of flange performance of QP980 ultra-high-strength steel
[J]. Journal of Plasticity Engineering, 2019, 26(6):50-54.

 


[7]聂昕,杨昕宇,张茜,等.基于不同应变路径的QP980超高强钢板回弹预测
[J].塑性工程学报,2020,27(4):68-74.

 

Nie X, Yang X Y, Zhang X, et al. Springback prediction of QP980 ultra high-strength steel plate based on different strain paths
[J]. Journal of Plasticity Engineering, 2020, 27(4):68-74.

 


[8]金光宇,王业勤,宇凡,等.超高强钢QP980材料成形极限试验及仿真研究
[J].山东冶金,2023,45(5):28-30.

 

Jin G Y, Wang Y Q, Yu F, et al. Research on material forming limit test and simulation of ultra-high strength steel QP980
[J]. Shandong Metallurgy, 2023, 45(5):28-30.

 


[9]温正略,李娟,徐栋恺.QP980在汽车座椅靠背边板上的应用与仿真分析
[J].模具工业,2017,43(10):20-23.

 

Wen Z L, Li J, Xu D K. Application and simulation analysis of QP980 on the seat backrest side plate
[J]. Die & Mould Industry,2017,43(10):20-23.

 


[10]刘贞伟,吴彦骏,莫云.QP980高强钢制造的汽车地板纵梁拉延件的回弹分析
[J].精密成形工程,2017,9(6):62-67.

 

Liu Z W, Wu Y J, Mo Y. Springback control of floor rail member made of AHSS QP980
[J].Journal of Netshape Forming Engineering,2017,9(6):62-67.

 


[11]王秋雨,夏明生,刘淑影,等.组织特征对980 MPa级先进超高强钢成形性能和拉伸行为的影响
[J].机械工程材料,2023,47(1):100-105,118.

 

Wang Q Y, Xia M S,Liu S Y,et al. Effect of microstructure characteristics on formability and tensile behavior of 980 MPa grade advanced ultra-high strength steels
[J].Materlals for Mechanlcal Engineering,2023,47(1):100-105,118.

 


[12]唐帆.DP1180和QP1180钢组织与力学性能的比较
[J].船舶职业教育,2018,6(1):40-42.

 

Tang F.Comparison of microstructure and mechanical properties of DP1180 and QP1180 steels
[J].Shipbuilding Vocational Education,2018,6(1):40-42.

 


[13]梁发周,钟圣滔.基于AutoForm模拟的汽车B柱加强板热冲压工艺分析与优化设计
[J].锻压技术,2022,47(12):75-80.

 

Liang F Z, Zhong S T. Analysis and optimization design on hot stamping process for automobile B-pillar reinforcement plate based on AutoForm simulation
[J]. Forging & Stamping Technology, 2022,47(12):75-80.

 


[14]Fu B, Yang W, Wang Y, et al. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction
[J]. Acta Materialia, 2014, 76: 342-354.

 


[15]Tjahjanto D, Suiker A, Turteltaub S, et al. Micromechanical predictions of TRIP steel behavior as a function of microstructural parameters
[J]. Computational Materials Science, 2007, 41(1): 107-116.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com