Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of rolling process on pore structure of aluminum foam prepared by powder composite rolling method
Authors: Zhang Yujie  Huang Wenzhan  Liu Guangming  Chen Peng  Chen Yao  Chen Xingyu 
Unit: (College of Materials Science and Engineering  Taiyuan University of Science and Technology  Taiyuan 030024  China) 
KeyWords: powder composite rolling method aluminum foam rolling deformation amount density pore structure characteristic  expansion ratio 
ClassificationCode:TG335
year,vol(issue):pagenumber:2024,49(5):92-101
Abstract:

 Taking aluminum powder and silicon powder as matrix powder and TiH2 as foaming agent, the aluminum foam was prepared by powder composite rolling method. Then, the microstructure composition of aluminum foam precursor, macroscopic morphology and pore structure parameters of aluminum foam were analyzed by SEM, EDS and XRD, and the pore structure characteristics of aluminum foam under different rolling processes were studied. The results show that with the increasing of rolling deformation, the dispersion of Si/Ti metal powder in the matrix of aluminum foam precursor is improved, and the densification degree is improved. After foaming, the wall thickness of pore is inversely proportional to the rolling deformation, and the area of solid area increases with the increasing of rolling deformation. With the increasing of rolling temperature, the foaming time of aluminum foam is shorter, the expansion rate is higher, and the foaming degree is higher. At the rolling temperature of 500 °C, the matrix powder in the precursor is more closely bonded, the powder gap is reduced, the thickness and hardness of dense layer for precursor are small, and the gas diffusion power in the foaming process is large. After foaming, the solid layer area is small, the wall thickness of foam pore for sample becomes thinner, and the roundness value is higher. The aluminum foam prepared by the powder composite rolling method has the best pore structure characteristics at the rolling temperature of 500 °C and the rolling deformation of 60%. 

 
Funds:
基金项目:博士启动基金(20192066);来晋优秀博士基金(20202021);山西省高等学校科技创新(2020L0342)
AuthorIntro:
作者简介:张玉洁(1998-),女,硕士研究生 E-mail:1284910223@qq.com 通信作者:黄闻战(1989-),男,博士,副教授 E-mail:2013041@tyust.edu.cn
Reference:

 
[1]张凯,吴引江,刘高建,等.高孔隙率金属多孔材料的制备技术与应用
[J].中国材料进展,2023,42(10):814-825.


 

Zhang K, Wu Y J, Liu G J, et al. Preparation technology and application of high porosity metal porous materials
[J].Materials China, 2023,42(10):814-825.

 


[2]Yang S J, Luo H J, Lu X T, et al. Influence of rolling on foamable precursor sandwich and aluminum foam sandwich
[J]. Journal of Materials Engineering and Performance,2023, 32:2488-2500.

 


[3]Lin Z Q, Gong W P, Wan L, et al. Field measurements for traffic noise reduction in highway tunnels using closed-cell aluminum foam board
[J]. Applied Sciences,2022,12(2):538-557.

 


[4]张乐,郑顺奇,郑阳升,等.我国泡沫铝材料关键技术进展与展望
[J].中国材料进展,2022,41(7):547-553.

 

Zhang L, Zheng S Q, Zheng Y S, et al. Progress and prospect of key technologies for aluminum foam materials in china
[J].Materials China, 2022,41(7):547-553.

 


[5]邹田春,谢明睿,成莹,等.粉末冶金发泡法制备闭孔泡沫铝研究进展
[J].热加工工艺, 2020,49(24):15-20.

 

Zou T C, Xie M R, Cheng Y, et al. Research development in preparation of closed-cell foamed aluminum by powder metallurgy foaming method
[J].Hot Working Technology, 2020,49(24):15-20.

 


[6]陈世龙,孙麟,张凯祺,等.泡沫铝材料的制备工艺及应用研究进展
[J].铸造设备与工艺,2022,(6):58-62,70.

 

Chen S L, Sun L, Zhang K Q, et al. Progress in preparation and application of aluminum foam
[J].Foundry Equipment & Technology, 2022,(6):58-62,70.

 


[7]孙麟,陈世龙,张凯祺,等.泡沫铝复合材料的研究进展与展望
[J].金属功能材料,2022,29(5):49-56,68.

 

Sun L, Chen S L, Zhang K Q, et al. Research progress and prospect of aluminum foam composites
[J].Metallic Functional Materials, 2022,29(5): 49-56,68.

 


[8]王卫,冯展豪,黄鹏,等.发泡工艺参数对6061泡沫铝孔结构和压缩性能的影响
[J].铸造, 2023, 72(1):53-60.

 

Wang W, Feng Z H, Huang P, et al. Effect of foaming process parameters on cell structure and compression properties of A6061 aluminum foam
[J].Foundry, 2023,72 (1):53-60.

 


[9]Kobashi M, Noguchi M, Kanetake N. Observation of foaming behavior for rolled sheet precursors made of various aluminum powders
[J].Materials Transactions, 2011, 52(5):934-938.

 


[10]王耀奇,任学平,侯红亮.泡沫铝及其三明治结构累积叠轧制备
[J].工程科学学报, 2013,(6):793-798.

 

Wang Y Q, Ren X P, Hou H L. Preparation of aluminum foams and their sandwiches by accumulative roll-bonding
[J].Chinese Journal of Engineering, 2013, (6):793-798.

 


[11]魏宥,罗洪杰,卢晓通,等.轧制态下Cu含量对泡沫铝泡孔结构的影响
[J].东北大学学报:自然科学版,2021,42(10):1421-1426.

 

Wei Y, Luo H J, Lu X T, et al. Effect of Cu content on pore structure of aluminum foams after rolling process
[J].Journal of Northeastern University:Natural Science, 2021,42(10):1421-1426.

 


[12]Wang F, Bian Y Q, Wang L C, et al. Foaming behavior of microsized aluminum foam using hot rolling precursor
[J]. Metals,2023,13(5):928-939.

 


[13]Poot M A J, Cruz R A, Colin García E, et al. Production of refined and modified closed-cell aluminum foams by melt-foaming method
[J]. Metals, 2023,13(3):622-637.

 


[14]陈世龙,孙麟,张凯祺,等.泡沫铝材料的制备工艺及应用研究进展
[J].铸造设备与工艺,2022,(6):58-62,70.

 

Chen S L, Sun L, Zhang K Q, et al. Progress in preparation and application of aluminum foam
[J]. Foundry Equipment & Technology, 2022,(6): 58-62,70.

 


[15]张敏,陈长军,王晓南.Si和Mg粉末对泡沫铝发泡过程的影响
[J].材料热处理学报,2014,35(5):79-84.

 

Zhang M, Chen C J, Wang X N. Influence of Si and Mg powders on foaming process of aluminum foams
[J]. Transactions of Materials and Heat Treatment, 2014,35 (5): 79-84.

 


[16]帅美荣,刘光明.塑性力学与轧制原理
[M]. 北京:冶金工业出版社,2019.

 

Shuai M R, Liu G M. Plastic Mechanics and Rolling Principle
[M]. Beijing: Metallurgical Industry Press, 2019.

 


[17]Wang S X. Aluminum silicon alloy rolling method and experimental research
[A]. Information Engineering Research Institute,USA.Proceedings of the 2014 IMSS International Conference on Future Manufacturing Engineering
[C].Taylor & Francis,2014.

 


[18]徐文斌,胡志力,庞秋.泡沫铝夹芯板预制坯热变形行为
[J].锻压技术, 2023, 48(5):44-50.

 

Xu W B, Hu Z L, Pang Q. Thermal deformation behavior on aluminium foam sandwich preformed
[J].Forging & Stamping Technology, 2023,48(5):44-50.

 


[19]李松.多道次铝板带轧制过程轧件温度场数值模拟
[J].科技创业月刊,2012,25(7):197-198.

 

Li S. Numerical simulation of temperature field in multi-pass aluminum strip rolling process
[J].Journal of Entrepreneurship in Science & Technology, 2012,25(7):197-198.

 


[20]Rensburg G J J V, Bogaers A E J .Numerical simulation of plastic deformation and mechanical response of strip rolled aluminum alloys
[J].IOP Conference Series:Materials Science and Engineering, 2018, 430(1):012-025.

 


[21]王录才,王芳. 泡沫金属制备、性能及应用
[M]. 北京:国防工业出版社,2012.

 

Wang L C, Wang F. Preparation, Properties and Applications of Metal Foams
[M]. Beijing: National Defense Industry Press, 2012.

 


[22]李鸿. 混合元素轧制法制备泡沫铝夹芯板及其性能研究
[D].沈阳:东北大学,2008.

 

Li H. Study on Preparation and Properties of Aluminum Foam Sandwich by Mixing Elemental Powder Rolling
[D].Shenyang: Northeast University, 2008.

 


[23]Zu G Y, Song B N, Guan Z H, et al. Preparation of aluminum foam sandwich by rolling-bonding/powder metallurgy foaming technology
[J].Journal of Wuhan University of Technology-Mater. Sci. Ed.,2011,26(4):671-674.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com