Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High strain rate constitutive model and electromagnetic forming application evaluation for 2219 aluminum alloy
Authors: Tang Tianyu Huang Liang Xu Jiahui Xie Bingxin Sun Yiran Shi Tian 
Unit: (State Key Laboratory of Materials Processing and Die & Mould Technology  School of Materials Science and Engineering    Huazhong University of Science and Technology  Wuhan 430074  China) 
KeyWords: 2219 aluminum alloy  constitutive model  high strain rate  hot deformation behavior  electromagnetic forming 
ClassificationCode:TG391
year,vol(issue):pagenumber:2024,49(5):125-134
Abstract:

  In order to explore the high strain rate deformation behavior of 2219 aluminum alloy during electromagnetic forming, the high strain rate and high temperature quasi-static tensile experiments of aluminum alloy were conducted by separate Hopkinson tensile rods and thermal simulation testing machine, and the influences of different temperatures and strain rates on the flow stress of 2219 aluminum alloy were analyzed. Then, the strain rate term of traditional J-C constitutive models was corrected and optimized. Furthermore, based on the traditional and optimized J-C constitutive model, the finite element models of electromagnetic forming were established respectively, and the experimental results of electromagnetic forming were compared. The results show that the tensile strength of 2219 aluminum alloy increases first and then decreases with the increasing of strain rate, and the flow stress gradually decreases with the increasing of temperature. The optimized OP J-C constitutive model has the best fitting effect, and linear correlation coefficients R and AARE are 0.9975 and 1.06%, respectively. Compared with the traditional J-C constitutive model, the electromagnetic forming simulation results of the optimized constitutive model are more consistent with the experimental values, which confirms that the optimized constitutive model can accurately describe the high-rate deformation behavior of 2219 aluminum alloy.

 
Funds:
基金项目:国家自然科学基金面上项目(51975229);湖北省重点研发计划项目(2020BAB139);武汉市应用基础前沿项目(2020010601012178)
AuthorIntro:
作者简介:唐天宇(1999-),男,硕士研究生 E-mail:tangtianyu@hust.edu.cn 通信作者:黄亮(1981-),男,博士,教授 E-mail:huangliang@hust.edu.cn
Reference:

 
[1]苏红亮.2219铝合金电磁成形宏微观机理及电磁翻边工艺基础研究
[D].武汉:华中科技大学,2020.


 

Su H L. Research on the Macro and Micro Mechanisms of 2219 Aluminum Alloy Under Electromagnetic Forming and the Basis of Electromagnetic Flanging Process
[D]. Wuhan: Huazhong University of Science and Technology, 2020.

 


[2]任东超,邱娟,杨涛,等.2219铝合金热加工及组织演化
[J].锻压技术,2022,47(5):211-216.

 

Ren D C, Qiu J, Yang T, et al. Thermal working and microstructure evolution for 2219 aluminum alloy
[J]. Forging & Stamping Technology, 2020, 47(5): 211-216.

 


[3]管仁国,娄花芬,黄晖,等.铝合金材料发展现状、趋势及展望
[J].中国工程科学,2020,22(5):68-75.

 

Guan R G, Lou H F, Huang H, et al. Development of aluminum alloy materials: Current status, trend, and prospects
[J]. Strategic Study of CAE, 2020, 22(5): 68-75.

 


[4]谢冰鑫,黄亮,黄攀,等.铝合金板料电磁翻边全流程工艺研究
[J].中国机械工程,2021,32(2):220-226.

 

Xie B X, Huang L, Huang P, et al. Research on whole process route of electromagnetic flanging of aluminum alloy sheets
[J]. China Mechanical Engineering, 2021, 32(2): 220-226.

 


[5]Li C, Liu D, Yu H, et al. Research on formability of 5052 aluminum alloy sheet in a quasi-static-dynamic tensile process
[J]. International Journal of Machine Tools & Manufacture, 2009, 49(2):117-124.

 


[6]金淳,黄亮,李建军,等.不同热处理状态下成形速率对2219铝合金成形极限的影响
[J]. 塑性工程学报,2017,24(1):125-132.

 

Jin C, Huang L, Li J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions
[J]. Journal of Plasticity Engineering, 2017, 24(1): 125-132.

 


[7]Xu J H, Huang L, Xie B X, et al. High strain rate deformation behavior of 2195 Al-Li alloy: Constitutive behavior and grain fragmentation
[J]. Journal of Alloys and Compounds, 2023, 936: 168265.

 


[8]Xu J H, Huang L, Xie B X, et al. Microstructure evolution and mechanical properties of as-annealed and solution treated Al-Cu-Li alloy 2195 under dynamic compression
[J]. Journal of Materials Processing Technology, 2022, 303: 117516.

 


[9]Xie B X, Huang L, Xu J H, et al. Microstructure evolution and strengthening mechanism of Al-Li alloy during thermo-electromagnetic forming process
[J]. Journal of Materials Processing Technology, 2023, 315: 117922.

 


[10]苏红亮,黄亮,李建军,等.推进剂贮箱零件侧翻孔电磁成形数值模拟
[J].锻压技术,2016,41(12):53-61.

 

Su H L, Huang L, Li J J, et al. Numerical simulation on the side hole flanging electromagnetic forming for propellant tank parts
[J]. Forging & Stamping Technology, 2016, 41(12): 53-61.

 


[11]王紫旻,赵淘,马伯洋,等.基于多场耦合仿真的时效态铝合金电磁翻孔成形
[J].锻压技术,2022,47(10):191-197.

 

Wang Z M, Zhao T, Ma B Y, et al. Electromagnetic flanging of aging aluminum alloy based on multi-field couplingsimulation
[J]. Forging & Stamping Technology, 2022, 47(10): 191-197.

 


[12]崔丽,杜建宁,张超,等.2B06铝合金电磁成形试验研究
[J].锻压技术,2022,47(1):106-114.

 

Cui L, Du J N, Zhang C, et al. Experimental study on electromagnetic forming for 2B06 aluminum alloy
[J]. Forging & Stamping Technology, 2022, 47(1): 106-114.

 


[13]Su H L, Huang L, Li J J, et al. Two-step electromagnetic forming: A new forming approach to local features of large-size sheet metal parts
[J]. International Journal of Machine Tools and Manufacture, 2018, 124: 99-116.

 


[14]Li J J, Qiu W, Huang L, et al. Gradient electromagnetic forming (GEMF): A new forming approach for variable-diameter tubes by use of sectional coil
[J]. International Journal of Machine Tools and Manufacture, 2018, 135: 65-77.

 


[15]Nieto-Fuentes J C, Rittel D, Osovski S. On a dislocation-based constitutive model and dynamic thermomechanical considerations
[J]. International Journal of Plasticity, 2018, 108: 55-69.

 


[16]Xie B X, Huang L, Wang Z Y, et al. Microstructural evolution and mechanical properties of 2219 aluminum alloy from different aging treatments to subsequent electromagnetic forming
[J]. Materials Characterization, 2021, 181: 111470.

 


[17]Su H L, Huang L, Li J J, et al. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings
[J]. Journal of Materials Science & Technology, 2021, 70: 125-135.

 


[18]Ye T, Wu Y Z, Liu A M, et al. Mechanical property and microstructure evolution of aged 6063 aluminum alloy under high strain rate deformation
[J]. Vacuum, 2019, 159: 37-44.

 


[19]Shamchi S P, Queiros d M F J M, Tavares P J, et al. Thermomechanical characterization of Alclad AA2024-T3 aluminum alloy using split Hopkinson tension bar
[J]. Mechanics of Materials, 2019, 139: 103198.

 


[20]郭元恒, 谢延敏, 王东涛,等.2124铝合金热成形本构模型及工艺分析
[J].锻压技术,2022,47(2):213-219.

 

Guo Y H, Xie Y M, Wang D T, et al. Constitutive model and process analysis on thermoforming of 2124 aluminum alloy
[J]. Forging & Stamping Technology, 2022, 47(2): 213-219.

 


[21]王晨宇,许进升,李辉,等.高强2A12铝合金修正Johnson-Cook本构模型
[J].中国有色金属学报,2023,33(1):78-87.

 

Wang C Y, Xu J S, Li H, et al. Modified Johnson-Cook constitutive model of high strength 2A12 aluminum alloy
[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1): 78-87.

 


[22]Wang H, Qin G, Li C G. A modified Arrhenius constitutive model of 2219-O aluminum alloy based on hot compression with simulation verification
[J]. Journal of Materials Research and Technology, 2022, 19: 3302-3320.

 


[23]Zeng R, Huang L, Li J J, et al. Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel
[J]. International Journal of Plasticity, 2019, 120: 64-87.

 


[24]张会萍,黄亮,王泽宇,等.不同热处理状态的2219铝合金动态加载下的力学行为和断裂机制
[J].稀有金属材料与工程,2022,51(7):2560-2569.

 

Zhang H P, Huang L, Wang Z Y, et al. Mechanical behavior and fracture mechanism of 2219 aluminum alloy under dynamic loading under different heat treatment states
[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2560-2569.

 


[25]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
[J]. Engineering Fracture Mechanics, 1983, 21:541-548.

 


[26]方进秀,张兴权,王会廷,等.5052铝合金的动态拉伸性能及其本构模型
[J].机械工程学报,2022,58(8):160-169.

 

Fang J X, Zhang X Q, Wang H T, et al. Dynamic tensile properties and constitutive model of 5052 aluminum alloy
[J]. Journal of Mechanical Engineering, 2022,58(8): 160-169.

 


[27]André M M. Dynamic Behavior of Materials
[M]. New York: John Wiley & Sons, Inc.,1994.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com