Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Surface integrity analysis and fretting fatigue prediction on titanium alloy by ultrasonic rolling
Authors: Huang Fang1  Ni Yongda2  Jin Zheliang1  Zhang Xuehui3 
Unit: (1. School of Mechanical and Electrical Engineering  Zhejiang Industry Polytechnic College  Shaoxing 312000 China   2. School of Mathematical Sciences  Tianjin University of Technology  Tianjin 300387 China   3. School of Continuing Education Zhejiang Industry Polytechnic College  Shaoxing 312000 China) 
KeyWords: Ti6Al4V titanium alloy  surface integrity  fretting fatigue  ultrasonic rolling  crack initiation  crack propagation 
ClassificationCode:TH161
year,vol(issue):pagenumber:2024,49(5):142-151
Abstract:

 In order to improve the surface performance and fretting fatigue resistance of Ti6Al4V titanium alloy, the ultrasonic rolling technology was used for its surface strengthening treatment, and the surface integrity and fretting fatigue crack initiation and propagation after ultrasonic surface rolling strengthening were studied by combining experiments and numerbycal analysis. Experimental research shows that ultrasonic surface rolling process can significantly reduce the surface roughness of Ti6Al4V titanium alloy, refine the microstructure with a gradient distribution along the depth direction, and introduce the compressive residual stress of -573 MPa and the work hardened layer with surface hardness of 447 HK and depth of 120 μm in the surface layer of the titanium alloy. Based on the surface integrity induced by ultrasonic surface rolling process, a finite element model of fretting fatigue for Ti6Al4V titanium alloy was established, and the crack initiation position is predicted by combining the maximum relative sliding amplitude, dissipated energy and equivalent damage stress model. The crack initiation direction is predicted by the maximum energy release rate criterion. Finally, based on joint simulation of ABAQUS and FRANC3D, the prediction on the fretting fatigue crack propagation is realized. 

Funds:
基金项目:浙江省基础公益研究计划资助项目(LTGS23F030001)
AuthorIntro:
作者简介:黄芳(1981-),女,硕士,副教授 E-mail:huangf2009@126.com
Reference:

 
[1]甘伟, 项俊锋, 黄芳. 锻造温度对汽车用新型钛合金性能的影响
[J]. 兵器材料科学与工程, 2019,42(5): 70-73.


 

Gan W, Xiang J F, Huang F. Effect of forging temperature on properties of new titanium alloys for automobiles
[J]. Ordnance Material Science and Engineering, 2019,42(5): 70-73.

 


[2]Yi J, Wang X B, Jiao L, et al. Research on deformation law and mechanism for milling micro thin wall with mixed boundaries of titanium alloy in mesoscale
[J]. Thin-Walled Structures, 2019, 144: 106329.

 


[3]曹彦生, 郑联语, 王攀, 等. 不锈钢套筒表面光整硬化高效加工技术
[J]. 工具技术, 2022, 56(12): 113-116.

 

Cao Y S, Zheng L Y, Wang P, et al. High-efficiency processing technology of stainless steel sleeve surface finishing and hardening
[J]. Tool Engineering, 2022, 56(12): 113-116.

 


[4]袁永强, 刘丹, 林伦, 等. 自动炮击针表面性能提升技术研究
[J].兵器材料科学与工程, 2023,46(1):43-47.

 

Yuan Y Q, Liu D, Lin L, et al. Research on surface performance improvement technology of automatic shelling needle
[J]. Ordnance Material Science and Engineering, 2023,46(1):43-47.

 


[5]高心寰, 潘金芝, 程志, 等. GCr15SiMn轴承座圈超声滚压表面抗接触疲劳性能分析
[J]. 热加工工艺, 2022,51(16):110-115.

 

Gao X H, Pan J Z, Cheng Z, et al. Analysis of contact fatigue resistance of GCr15SiMn bearing ring surface by ultrasonic rolling
[J]. Hot Working Technology, 2022,51(16):110-115.

 


[6]尚方方, 周振宇, 朴钟宇, 等. 超声滚压对铝合金表面质量和耐磨性影响研究
[J]. 液压与气动, 2022,46(7): 112-122.

 

Shang F F, Zhou Z Y, Piao Z Y, et al. Effect of ultrasonic rolling on surface quality and wear resistance of aluminum alloy
[J]. Chinese Hydraulics & Pneumatics, 2022,46(7): 112-122.

 


[7]王嘉钿, 张常胜, 苏豪, 等. 超声振动常温/中温滚压钛合金应力场分析
[J]. 制造技术与机床, 2021, (7): 84-88. 

 

Wang J T, Zhang C S, Su H, et al. Stress field analysis of titanium alloy rolled by ultrasonic vibration at room/medium temperature
[J]. Manufacturing Technology & Machine Tool, 2021, (7): 84-88.

 


[8]陈云峰, 尹丹青, 倪锋. 超声滚压静压力对0Cr13Ni5Mo不锈钢残余应力和粗糙度的影响
[J]. 锻压技术, 2023,48(10): 161-168.

 

Chen Y F, Yin D Q, Ni F. Influence of static pressure on residual stress and roughness during ultrasonic rolling for 0Cr13Ni5Mo stainless steel
[J]. Forging & Stamping Technology, 2023,48(10): 161-168.

 


[9]李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响
[J]. 表面技术, 2019,48(10): 34-40.

 

Li F Q, Zhao B. Effect of ultrasonic processing burnishing pressure on titanium alloy surface properties
[J]. Surface Technology, 2019,48(10): 34-40. 

 


[10]王排岗, 王晓强, 王浩杰, 等. 42CrMo钢超声滚挤压表面硬度有限元分析及参数优化
[J]. 锻压技术, 2023,48(3): 152-158.

 

Wang P G,Wang X Q, Wang H J, et al. Finite element analysis and parameter optimization on surface hardness of ultrasonic rolling for 42CrMo steel
[J]. Forging & Stamping Technology, 2023,48(3): 152-158.

 


[11]潘高峰, 朱磊, 苑泽伟, 等. 超声滚压工艺对TI6AL4V钛合金表面残余应力的影响
[J]. 现代制造工程, 2022, (1): 85-90.

 

Pan G F, Zhu L, Yuan Z W, et al. Effect of ultrasonic rolling process on the surface residual stress of Ti6Al4V titanium alloy
[J]. Modern Manufacturing Engineering, 2022, (1): 85-90. 

 


[12]王朝阳, 黄俏梅, 秦荣斌, 等. 超声滚压载荷对 25CrMo4 车轴钢表面强化特征的影响规律
[J].制造技术与机床, 2024, (1):48-52.

 

Wang C Y, Huang Q M, Qin R B, et al. Influence of the intensity of ultrasonic rolling on surface strengthening features of 25CrMo4 axle steel
[J].Manufacturing Technology & Machine Tool, 2024, (1):48-52.

 


[13]任雁, 刘佳, 刘斌, 等. 超声滚挤压风电轴承材料表面粗糙度加工参数敏感性研究
[J]. 锻压技术, 2022, 47(1): 98-105.

 

Ren Y, Liu J, Liu B, et al. Sensitivity study on surface roughness processing parameters for wind turbine bearing materials by ultrasonic rolling extrusion
[J]. Forging & Stamping Technology, 2022, 47(1): 98-105.

 


[14]吴杰,党嘉强,李宇罡,等.应力超声滚压表面强化机理和抗疲劳性能研究
[J/OL].机械工程学报,1-10
[2024-04-23].http://kns.cnki.net/kcms/detail/11.2187.TH.20231220.0908. 002.html.

 

Wu J, Dang J Q, Li Y G, et al. Study on strengthening mechanism and anti-fatigue performance of stress ultrasonic rolling
[J/OL]. Journal of Mechanical Engineering,1-10
[2024-04-23].http://kns.cnki.net/kcms/detail/11.2187.TH.20231220.0908. 002.html.

 

 

 


[15]Ao N, Liu D X, Zhang X H, et al. Improved fretting fatigue mechanism of surface-strengthened Ti-6Al-4V alloy induced by ultrasonic surface rolling process
[J]. International Journal of Fatigue, 2023, 170: 107567. 

 


[16]Zou J H, Liang Y L, Yun J, et al. Fretting fatigue mechanism of 40CrNiMoA steel subjected to the ultrasonic surface rolling process: The role of the gradient structure
[J]. International Journal of Fatigue, 2023, 167: 107383.

 


[17]Liu D, Liu D X, Zhang X H, et al. An investigation of fretting fatigue behavior and mechanism in 17-4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process
[J]. International Journal of Fatigue, 2020, 131: 105340.

 


[18]Yang J, Liu D X, Zhang X H, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy
[J]. International Journal of Fatigue, 2020, 133:105373.

 


[19]Liu C S, Liu D X, Zhang X H, et al. Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process
[J]. International Journal of Fatigue, 2019, 125: 249-260.

 


[20]Zhang X H, Fan K F, Liu D X, et al. Numerical study on fretting fatigue crack initiation behaviors of Ti-6Al-4V alloy
[J]. Journal of Failure Analysis and Prevention, 2021, 21(4): 1283-1288.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com