Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization and simulation analysis on forming process for TB6 titanium alloy main rotor hub
Authors: Li Zhiyong1 Hua Kui2 Xu Ping′an1 Guo Nan1 Wang Haipeng2 Liu Baoliang2 Song Amin2 
Unit: 1. Changhe Aircraft Industry (Group) Co. Ltd. 2. Xi′an Triangle Defense Co. Ltd. 
KeyWords: TB6 titanium alloy main rotor hub pre-forging structure design average grain size deformation dead zone 
ClassificationCode:TG312;TG316.3
year,vol(issue):pagenumber:2024,49(6):70-80
Abstract:

Due to the structural of forgings, the TB6 titanium alloy main rotor hub is prone to produce a large area of “deformation dead zone” at its upper and lower end faces. Therefore, for the main rotor hub of a certain type of helicopter, a pre-forging structure design was used for improving the deformation step to optimize the forming process. The strain distribution, temperature distribution, metal streamline distribution, dynamic recrystallization fraction of β phase, average grain size of β phase and average grain size of α phase for the pre-forging and final forging processes that had a great influence on the structure uniformity degree of forgings were predicted and analyzed by numerical simulation software Simufact. At the same time, the trial forgings were conducted based on the simulation result. The results show that the forming process with the pre-forging structure design of main rotor hub is reasonable and feasible. The deformation of the whole pre-forging process is uniform, the average grain size of α phase at the upper and lower end faces decreases continuously, the average grain size of α phase at edges increases, the distribution of metal streamline is reasonable, and the forming effect of the pre-forging blank is good. The overall deformation in the final forging process is relatively uniform, the average grain size of α phase is between 2.64-4.90 μm which makes a good size match with the matrix β phase, the metal streamline distribution is reasonable, and the forming effect of forgings is good. The trial TB6 titanium alloy main rotor hub forgings have little difference and good uniformity in microstructure and properties. 

Funds:
国家重点研发计划项目(2022XX5100)
AuthorIntro:
作者简介:李智勇(1970-),男,学士,高级工程师,E-mail:116049213@qq.com;通信作者:花魁(1990-),男,硕士,工程师,E-mail:602583573@qq.com
Reference:
[1]田晓生.超高塑性TB6基合金组织性能研究[D].秦皇岛:燕山大学,2019.

Tian X S.Study on Microstructure and Properties of Ultra High Plasticity TB6 Alloy[D].Qinhuangdao: Yanshan University,2019.

[2]占立水,叶俊青,夏春林,等.大中央件盘件成形[J].兵器装备工程学报,2018,39(3):162-164,177. 

Zhan L S,Ye J Q,Xia C L,et al.Forming of the large main rotor hub[J].Journal of Ordnance Equipment Engineering,2018,39(3):162-164,177. 

[3]林好转,郭灵,连建民,等.Ti-1023合金桨毂锻件变形过程有限元法模拟和分析[J].航空材料学报,2003,23(Z1):95-99.

Lin H Z,Guo L,Lian J M,et al.The FEM simulation and analysis for the Ti-1023 hub forgings′ processing[J].Journal of Aeronautical Materials,2003,23(Z1):95-99.

[4]张禹森.TB6钛合金航空模锻件低倍粗晶的形成机理研究[D].秦皇岛:燕山大学,2021.

Zhang Y S.Study on the Formation Mechanism of Coarse Grain in TB6 Aviation Die Forging[D].Qinhuangdao: Yanshan University,2021.

[5]杨阳.基于DEFORM二次开发的38MnVS6非调质钢锻造过程微观组织演化模拟[D].大连:大连理工大学,2015.

Yang Y.Simulation of Microstructure Evolution of 38MnVS6 Non-quenched Steel During Forging Process Based on Development of DEFORM[D].Dalian: Dalian University of Technology,2015.

[6]郭胜华.Ti-10V-2Fe-3Al合金表层湿喷丸强化机理及其工艺优化研究[D].南昌:南昌航空大学,2018.

Guo S H.Study on Strengthening Mechanism and Process Optimization of Ti-10V-2Fe-3Al Alloy Surface by Wet Shot Peening[D].Nanchang:Nanchang Hangkong University,2018.

[7]丁蓉蓉.航空发动机Ti6242s合金压气机盘锻件的成形均匀性研究[D].重庆:重庆大学,2019.

Ding R R.Research on Forming Uniformity of Ti6242s Alloy Compressor Disk of Aeroengine [D].Chongqing:Chongqing University,2019.

[8]赵庆云,于雷,刘风雷,等.钛合金六角头螺栓头部成形过程的有限元分析[J].航空制造技术,2010,(10):64-68,87.

Zhao Q Y,Yu L,Liu F L,et al.Finite element analysis on head forming process of Ti-6Al-4V hexagon bolt[J].Aeronautical Manufacturing Technology,2010,(10):64-68,87.

[9]权国辉,白玲.TC4钛合金热锻双相及晶粒时空演变分析[J].模具工业,2020,46(10):57-61.

Quan G H,Bai L.Analysis on temporal and spatial evolution for hot forging dual phase and grain of TC4 titanium alloy[J].Die & Mould Industry,2020,46(10):57-61.

[10]叶星辉,郑光文,白凤梅,等.基于DEFORM-3D的压料油缸闭塞成形工艺可行性研究[J].精密成形工程,2016,8(5):131-136.

Ye X H,Zheng G W,Bai F M,et al.Feasibility study on the forming technology of press cylinder block based on DEFORM-3D[J].Journal of Netshape Forming Engineering,2016,8(5):131-136.

[11]高鸿翔,张淑红.基于DEFORM的斜齿轮锻造工艺分析[J].热加工工艺,2013,42(17):98-100.

Gao H X,Zhang S H.Analysis of helical gear forging process based on DEFORM[J].Hot Working Technology,2013,42(17):98-100.

[12]解西扬.基于DEFORM的铝合金轮毂锻造过程的分析研究[D].济南:济南大学,2016.

Xie X Y.Analysis and Research on the Forging Process of Aluminum Alloy Wheel Based on DEFORM[D].Jinan: Jinan University,2016.

[13]GJB 2744A—2019,航空用钛及自由锻件和模锻件规范[S].

GJB 2744A—2019,Specification for titanium and titanium alloy free forgings and die forgings for aerospace[S].

[14]高婷,周立鹏,朱峰,等.薄壁、高强度TC4管坯锻造有限元数值模拟[J].有色金属工程,2019,9(3):19-23.

Gao T,Zhou L P,Zhu F,et al.Finite element numerical simulation of thin-walled and high-strength TC4 tube billet for forging[J].Nonferrous Metals Engineering,2019,9(3):19-23. 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com