Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Experimental and simulation study on early failure of hot forging mold for H13 steel ring splint
Authors: Yan Tao1  Tang Tianyue2  Qi Haisheng1  Qiao Jinfang1  Yang Zhiyong2 
Unit: 1.Baoji Bao De Li Electrification Equipment Co.  Ltd.  2.Beijing Jiao Tong University 
KeyWords: H13 steel  hot forging mold  failure analysis  crack  heat treatment process 
ClassificationCode:TG315.2
year,vol(issue):pagenumber:2024,49(6):197-207
Abstract:

In order to solve the failure problem of hot forging mold for H13 steel ring splint due to frequent early cracks in the process of using, combined with the failure forms and parts of ring splint mold, the material composition, hardness and metallurgical organization of the taken specimens were analyzed by using direct-reading spectrometer, Rockwell hardness tester, optical microscope and scanning electron microscope, respectively. At the same time, the mechanical properties of material were examined by tensile test and impact test, and the failure causes of hot forging mold for H13 steel ring splint were analyzed and discussed by combination of finite element simulation analysis. Finally, the optimization of heat treatment process was carried out for the causes of mold failure. The results show that the main reason for the early failure of mold is the organization segregation and more eutectic carbide inclusions in mold material, and at the same time, the phenomenon of insufficient tempering, results in martensite residue, M-A organization in the tempering failed to fully transform, resulting in the insufficient and uneven tempered hardness, and there is a large concentration of stress in the failure part of the mold during forging, which exceeds the fatigue strength of the material, resulting in the deformation and early cracking of the mold. Optimized heat treatment process is quenching at 1060 ℃ + 1st tempering at 580 ℃ + 2nd tempering at 180 ℃, and the material strength is significantly improved, while the tensile strength increases by about 28% and the yield strength increases by about 58%.  

Funds:
国家自然科学基金面上项目(52372345)
AuthorIntro:
作者简介:闫涛(1984-),男,学士,副高级工程师,E-mail:ceeyantao@126.com;通信作者:杨智勇(1975-),男,博士,教授,E-mail:zhyyang@bjtu.edu.cn
Reference:

[1]徐继罗, 孙守田, 钱海峰. H13热作模具钢开裂失效问题分析[J]. 锻造与冲压, 2020, 474(1): 58-60.


Xu J L, Sun S T, Qian H F. Analysis of cracking failure of H13 die steel[J]. Forging & Metalforming, 2020, 474(1): 58-60.

[2]谭成, 马党参, 王华昆,等. H13钢压铸模具的失效分析[J]. 机械工程材料, 2016, 40(1): 106-110.

Tan C, Ma D S, Wang H K, et al. Failure analysis of a die casting die made of H13 steel[J]. Materials for Mechanical Engineering, 2016, 40(1): 106-110.

[3]陈淑平, 冀国良. H13钢模具失效分析及解决措施[J]. 金属加工:热加工, 2011, 646(19):55-57.

Chen S P, Ji G L. Failure analysis and solution measures for H13 steel dies[J]. MW Metal Forming, 2011, 646(19):55-57.

[4]朱斌, 张全新, 张海平,等. H13齿轮热锻模具失效分析[J]. 工程技术研究, 2021, 6(7): 147-148,251.

Zhu B, Zhang Q X, Zhang H P, et al. Failure analysis of H13 gear hot forging die[J]. Engineering and Technological Research, 2021, 6(7): 147-148,251.

[5]黄南乡. H13挤压模具失效分析[J]. 南方金属, 2020, 237(6): 20-23,36.

Huang N X. Failure analysis of extrusion die H13[J]. Southern Metals, 2020, 237(6): 20-23,36.

[6]金飞翔, 董奇, 徐梦洁, 等. 基于有限元铝合金复杂精密锻造模具失效分析及优化[J]. 锻压技术,2023, 48(2): 180-184.

Jin F X, Dong Q, Xu M J, et al. Failure analysis and optimization on aluminum alloy complex precision forging die based on finite element [J]. Forging & Stamping Technology, 2023, 48(2): 180-184.

[7]利义旭, 杨耀祥, 刘梅华,等. 高速热镦锻用H13顶出器模具失效分析及工艺改进[J]. 南方金属, 2022, 248(5): 5-8.

Li Y X, Yang Y X, Liu M H, et al. Failure analysis and process improvement of H13 ejector die for high-speed hot upsetting[J]. Southern Metals, 2022, 248(5): 5-8.

[8]姚宏康, 曹立军, 冯明明. 汽车零件模具H13钢失效分析及预防措施[J]. 模具制造, 2020, 20(9): 86-89.

Yao H K, Cao L J, Feng M M. Failure analysis and preventive measures of H13 automobile parts die[J]. Die & Mould Manufacture, 2020, 20(9): 86-89.

[9]赵亮, 张恒, 范永革. 4Cr5MoSiV1热挤压模具失效分析[J].热处理,2018,33(4):48-51.

Zhao L, Zhang H, Fan Y G. Failure analysis of 4Cr5MoSiV1 steel hot extrusion die [J]. Heat Treatment, 2018, 33(4):48-51.

[10]Kchaou M, Elleuch R, Desplanques Y, et al. Failure mechanisms of H13 die on relation to the forging process-A case study of brass gas valves[J]. Engineering Failure Analysis, 2010, 17(2): 403-415.

[11]Ding R G, Yang H B, Li S Z, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy[J]. Engineering Failure Analysis, 2021, 124: 105330.

[12]卢国辉, 黄拿灿, 黄惠平. H13铝型材挤压模具早期开裂失效分析[J]. 模具工业, 2001,(4): 48-51.

Lu G H, Huang N C, Huang H P. Analysis of early crack failure of the extrusion die of H13 steel for Al profiles[J]. Die & Mould Industry, 2001,(4): 48-51.

[13]焦国祥, 张小聪, 陈国辉. H13钢热挤压模开裂分析[J]. 理化检验:物理分册, 2010, 46(11): 728-730.

Jiao G X, Zhang X C, Chen G H. Cracking analysis of H13 steel hot extrusion die[J]. Physical Testing and Chemical Analysis,Part A:Physical Testing, 2010, 46(11): 728-730.

[14]程俊伟, 谷刘磊, 陈喜乐, 等. 滑动叉热锻模失效分析和解决措施[J]. 锻压技术, 2023, 48(12): 212-216.

Cheng J W, Gu L L, Chen X L, et al. Failure analysis and solution measures of sliding fork hot forging die [J]. Forging & Stamping Technology, 2023, 48(12): 212-216.

[15]陈琳. 基于4Cr5MoSiV1材质的磁轭温挤压模具失效有限元分析[J]. 模具制造, 2016, 16(11): 67-70.

Chen L. Finite element analysis of magnetic yoke temperature extrusion die failure based on 4Cr5MoSiV1 material[J]. Die & Mould Manufacture, 2016, 16(11): 67-70.

[16]刘红丽, 薛克敏, 左标,等. H13等径角挤压模具早期失效分析及结构优化方案[J]. 制造技术与机床, 2016, 645(3): 133-137.

Liu H L, Xue K M, Zuo B, et al. Analysis on early failure and optimization scheme of H13 die for equal channel angular pressing[J]. Manufacturing Technology & Machine Tool, 2016, 645(3): 133-137.

[17]Emamverdian A A, Sun Y, Cao C P, et al. Current failure mechanisms and treatment methods of hot forging tools (dies)-A review[J]. Engineering Failure Analysis, 2021,129:105678.

[18]GB/T 1299—2014, 工模具钢[S].

GB/T 1299—2014, Tool and mould steels [S].

[19]GB/T 230.1—2018, 金属材料洛氏硬度试验第1部分: 试验方法[S].

GB/T 230.1—2018, Metallic materials—Rockwell hardness test—Part 1:Test method[S].

[20]NADCA 207—2016, Special quality die steel & heat treatment acceptance criteria for die casting dies[S].

[21]GB/T 14979—1994, 钢的共晶碳化物不均匀度评定法[S].

GB/T 14979—1994, Eutectic carbide of steel—Micrographic method using standard diagrams[S].

[22]JB/T 8420—2008, 热作模具钢显微组织评级[S].

JB/T 8420—2008, Microstructure grading of hat die steel [S].

[23]李炯辉, 林德成. 金属材料金相图谱[M]. 北京: 机械工业出版社, 2006.

Li T H, Lin D C. Metallographic Atlas of Metallic Materials [M]. Beijing: China Machine Press, 2006.

[24]田玉新, 蔡海燕, 支玉明,等. 影响H13芯棒钢冲击韧性的因素分析[J]. 宝钢技术, 2009,(5): 22-26.

Tian Y X, Cai H Y, Zhi Y M, et al. Analysis of factors influencing H13 mandrel steel′s impact toughness [J]. Baosteel Technology, 2009,(5): 22-26.

[25]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[26]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].

[27]马党参, 周健, 张忠侃,等. 电渣重熔速度对H13钢组织和冲击性能的影响[J]. 钢铁, 2010, 45(8): 80-84.

Ma D S, Zhou J, Zhang Z K, et al. Effect of the melting rate of ESR on the microstructure and impact properties of H13 steel[J]. Iron and Steel, 2010, 45(8): 80-84.

[28]李永灯, 杨娥, 周杨,等. H13钢模块横向冲击功不合格原因[J]. 理化检验:物理分册, 2022, 58(2): 62-65.

Li Y D, Yang E, Zhou Y, et al. Reasons for unqualified transverse impact energy of H13 steel module[J]. Physical Testing and Chemical Analysis,Part A:Physical Testing, 2022, 58(2): 62-65.

[29]麻梦梅, 雷大俊. H13钢热处理工艺及研究现状[J].热处理技术与装备, 2023, 44(1): 13-16.

Ma M M, Lei D J. Heat treatment process and research status of H13 steel[J]. Heat Treatment Technology and Equipment, 2023, 44(1): 13-16.

[30]陈朔, 陈学敏, 徐祺昊,等. 淬、回火温度对含铈H13钢组织及硬度的影响[J]. 金属热处理, 2023, 48(6): 36-40.

Chen S, Chen X M, Xu Q H, et al. Effect of quenching and tempering temperature on microstructure and hardness of hardened H13 steel with Ce [J]. Heat Treatment of Metals, 2023, 48(6): 36-40.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com