Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on heat treatment and microstructure and properties of 1Cr16Ni4Mo2N stainless steel for high-strength pipeline
Authors: Su Ning1  Liu Fengjun1  Li Yuechao2 
Unit: 1. China Petroleum Pipeline Engineering Co.  Ltd.   2. Henan University of Science and Technology 
KeyWords: aging temperature  1Cr16Ni4Mo2N stainless steel  microstructure  mechanical property  corrosion property 
ClassificationCode:TG142.1;TG161
year,vol(issue):pagenumber:2024,49(6):215-220
Abstract:

In order to improve the mechanical properties and corrosion resistance properties of stainless steel for high-strength pipelines, the solution and aging treatment on 1Cr16Ni4Mo2N stainless steel for high-strength pipeline was conducted, the influences of aging temperature on the microstructure, mechanical properties and corrosion resistance properties of stainless steel were studied, and its mechanism of action was analyzed. The results show that after aging treatment at 350-625 ℃ for 4 hours, the matrix structures of 1Cr16Ni4Mo2N stainless steel are martensite and austenite, and with the increasing of aging temperature, martensite transforms into austenite. The yield strength ReL and tensile strength Rm of 1Cr16Ni4Mo2N stainless steel first increases and then decreases with the increasing of aging temperature, which has good strength plasticity at the aging temperature of 350 ℃. The results of immersion corrosion test in FeCl3 solution are consistent with those of electrochemical test. The corrosion rate of 1Cr16Ni4Mo2N stainless steel first increases and then decreases with the increasing of aging temperature, and it has the best corrosion resistance property at the aging temperature of 350 ℃. Thus, the optimum aging temperature of 1Cr16Ni4Mo2N stainless steel for high-strength pipeline is 350 ℃, at this time, the stainless steel has good strength and plasticity as well as corrosion resistance property.

Funds:
河南省科技攻关项目(2102210278);教育部产学合作协同育人项目(221176014)
AuthorIntro:
作者简介:苏宁(1976-),男,学士,工程师,E-mail:suning7611@sina.com
Reference:

[1]傅蔷. 某装置不锈钢管道渗漏原因分析与对策[J]. 全面腐蚀控制, 2023,37(4):122-124.


Fu Q. Analysis and countermeasures of stainless steel pipe leakage in a certain unit [J]. Total Corrosion Control, 2023,37(4):122-124.

[2]张小丽, 寻懋年, 梁小红, 等. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J].中国腐蚀与防护学报, 2023, 43(2): 384-390.

Zhang X L, Xun M N, Liang X H, et al. Precipitation of second phase and its effect on corrosion resistance of Ce-containing S31254 super austenitic stainless steel [J]. Journal of Chinese Society for Corrosion and Protection, 2023,43 (2): 384-390.

[3]苗华军.时效处理对超级双相不锈钢00Cr29Ni6Mo2N组织和耐点蚀性的影响[J]. 特殊钢, 2021, 42(5):81-84.

Miao H J. Effect of aging treatment on microstructure and pitting corrosion property of 00Cr29Ni6Mo2N super duplex stainless steel [J]. Special Steel, 2021,42 (5): 81-84.

[4]Han X L, Wei P, Zhao Y M, et al. Enhanced pitting corrosion resistance of nanostructured AISI 304 stainless steel via pipe inner surface grinding treatment[J]. Nanomaterials, 2023,13(2): 318-324.

[5]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[6]GB/T 229—2020,金属材料夏比摆锤冲击试验方法[S].

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method[S].

[7]GB/T 17897—2016,金属和合金的腐蚀不锈钢三氯化铁点腐蚀试验方法[S].

GB/T 17897—2016, Corrosion of metals and alloys—Corrosion test for pitting corrosion resistance of stainless steels in the ferric chloride solution[S].

[8]赵博, 臧伟, 郜飞, 等. 时效热处理对新型节镍双相不锈钢组织及性能的影响[J]. 钢管, 2023, 52(1):25-29.

Zhao B, Zang W, Gao F, et al. Effect by aging heat treatment on structure and properties of new nickel-saving duplex stainless steel [J]. Steel Pipe, 2023,52 (1): 25-29.

[9]范春华, 李国祥, 李雪莹, 等. AM355不锈钢在酸性溶液中的腐蚀电化学行为[J]. 材料科学与工程学报, 2018,36(1): 121-124,157.

Fan C H, Li G X, Li X Y, et al. Electrochemical corrosion behavior of AM355 stainless steel in acid solution [J]. Journal of Materials Science and Engineering, 2018,36(1): 121-124,157.

[10]唐娴, 张雷, 王竹, 等. SO2-4对含Cl-溶液中316L奥氏体不锈钢钝化行为及点蚀行为的影响[J]. 工程科学学报, 2018, 40(3): 366-372.

Tang X, Zhang L, Wang Z, et al. Effect of SO2-4 on the passive and pitting behavior of 316L austenitic stainless steel in Cl- -containing solution [J]. Chinese Journal of Engineering, 2018, 40(3):366-372.

[11]纪翔, 张汛涛, 宋先捷, 等.不同热处理后航空紧固件用17-4PH钢耐腐蚀性及硬度的研究[J].热加工工艺, 2022, 51(20): 130-136.

Ji X, Zhang X T, Song X J, et al. Study on corrosion resistance and hardness of 17-4PH steel for aviation fasteners after different heat treatment [J]. Hot Working Technology, 2022,51 (20): 130-136.

[12]孙永伟, 范芳雄, 王灵水. 热处理制度对UNS S32750超级双相不锈钢微观组织及腐蚀行为的影响[J].材料热处理学报, 2020, 41(6): 111-120.

Sun Y W, Fan F X, Wang L S. Effect of heat treatment process on microstructure and corrosion behavior of UNS S32750 super duplex stainless steel [J]. Transactions of Materials and Heat Treatment, 2020, 41 (6): 111-120.

[13]Zhao L, Qian H C, Chang W W, et al. Effect of aging heat treatment on microbiologically influenced corrosion of 17-4PH stainless steel by Pseudomonas aeruginosa[J]. Corrosion Science, 2024, 227: 111739-111743.

[14]Ahmad S, Mehta M L, Saraf S K, et al. Electrochemical studies of stress corrosion cracking of sensitized AISI 304 stainless steel in polythionic acids[J]. Corrosion, 2012, 41(6):363-367.

[15]赵兰英, 陈家兴. 时效处理对Cr20Mn18N0.5高氮奥氏体不锈钢组织与力学性能的影响[J].热加工工艺,2020,49(22): 132-134.


Zhao L Y, Chen J X. Effect of aging treatment on microstructure and mechanical properties of Cr20Mn18N0.5 high nitrogen austenitic stainless steel [J]. Hot Working Technology, 2020,49 (22): 132-134.

[16]李英, 崔红社, 李爱艳, 等. 时效温度对空调管道用钢耐点蚀性能的影响[J]. 腐蚀与防护, 2023, 44(4):54-58.

Li Y, Cui H S, Li A Y, et al. Effects of aging temperature on pitting resistance of steel for air conditioning pipes [J]. Corrosion & Protection, 2023,44 (4): 54-58.

[17]Wang G, Chen X, Zhao Y, et al. Effect of temperature on electrochemical corrosion behavior of X70 pipeline steel in high PH solution[J].Corrosion Science and Protection Technology, 2015, 27(3):226-230.

[18]刘成龙, 唐正友, 马亮,等. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J].材料导报, 2021, 35(24): 24147-24151.

Liu C L, Tang Z Y, Ma L, et al. Investigation on the aging precipitation behavior of 254SMo super austenitic stainless steel and the effect of precipitation on its mechanical properties [J]. Materials Reports, 2021,35 (24): 24147-24151.

[19]Huang N L, Tian Y,Yang R, et al. Preparation and cavitation erosion resistance of nanocrystalline surface layer on 304 stainless steels[J]. Surface and Coatings Technology,2024,481:130615-130622.

[20]Lin S P, Li D L, Zhou Q Q, et al. Study on corrosion perforation behavior of copper nickel alloy pipe during service in marine environment[J]. Engineering Failure Analysis, 2023, 153: 107628-107645.

[21]Cho S, Buchsbaum S F, Biener M, et al. True active surface area as a key indicator of corrosion behavior in additively manufactured 316L stainless steel[J]. Materials & Design,2024,237: 112559-112564.

[22]Raphael Frana Assumpo, Renata Mangini Santos, Maria Luísa Oliveira de Sousa, et al. Effect of low aging temperature and the reversion of martensite on the mechanical behavior of a 2304 lean duplex stainless steel[J]. Journal of Materials Science,2023,58(13): 5970-5988.

[23]Cheng X Q, Li C T, Dong C F, et al. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy[J]. International Journal of Minerals Metallurgy and Materials, 2011, 18(1):42-47.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com