Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Experimental investigation on steady state contact heat transfer coefficient between C18150 copper alloy and H13 mold steel
Authors: Zhao Jutao1 Zhang Liwen1 Zhang Chi1 Ding Haochen1 Ma Yi1 Yun Xinbing2 
Unit: 1. Dalian University of Technology   2.  Dalian Jiaotong University 
KeyWords: C18150 copper alloy  H13 mold steel  steady state contact heat transfer coefficient  interface average temperature  contact load 
ClassificationCode:TK124;TG379
year,vol(issue):pagenumber:2024,49(6):255-259
Abstract:

The steady state contact heat transfer coefficient between C18150 copper alloy and H13 mold steel was measured by a set of steady state contact heat transfer coefficient experimental equipment, and the direction of heat flow was controlled from H13 mold steel to C18150 copper alloy under the interface average temperature of 200-600 ℃ and the contact load of 1.56, 6.24, 10.92 and 15.6 MPa, respectively. Then, the influence laws of the interface average temperature, contact load and contact history process on the steady state contact heat transfer coefficient were studied and analyzed, and the steady state contact heat transfer coefficient was affected by the average interface temperature through changing the material properties and the contact surface state. The experimental results show that the steady state contact heat transfer coefficient is the largest when the interface average temperature is 345 ℃ and the contact load is 15.6 MPa. The steady state contact heat transfer coefficient in the loading process is smaller than that in the unloading process during different contact history processes. Thus, the experiment study can further improve the accuracy of the numerical simulation for C18150 copper alloy thermoforming process to further improve the forming quality.

Funds:
国家自然科学基金资助项目(52274375)
AuthorIntro:
作者简介:赵巨涛(1999-),男,硕士研究生,E-mail:17634947456@163.com;通信作者:张立文(1962-),男,博士,教授,E-mail:commat@mail.dlut.edu.cn
Reference:

[1]Xing L, Zhang L W, Zhang X Z, et al. Experimental investigation of contact heat transfer at high temperature based on steady-state heat flux method[J]. Experimental Heat Transfer, 2010, 23(2): 107-116.


[2]齐艳阳,刘江林,王涛,等. 基于FEM分析轧制预变形对AZ31B镁合金热轧板材边部损伤的影响规律[J]. 稀有金属,2022,46(7): 873-881.

Qi Y Y, Liu J L, Wang T, et al. Edge damage of hot rolled AZ31B magnesium alloy sheets with pre-rolling based on FEM [J]. Chinese Journal of Rare Metals, 2022, 46(7): 873-881.

[3]张海成,昌春艳,周杰. TC18钛合金热锻成形换热系数实验研究[J]. 锻压技术,2023,48(4): 24-31.

Zhang H C, Chang C Y, Zhou J. Research on heat transfer coefficient in hot forging of TC18 titanium alloy[J]. Forging & Stamping Technology, 2023, 48(4): 24-31.

[4]Lu B S, Wang L G, Geng Z, et al. Heat transfer characteristics of billet/die interface and measures to relieve thermal stress for hot forging die[J]. International Journal of Thermophysics, 2017, 38(7): 1-20.

[5]Dou R F, Ge T R, Liu X L, et al. Effects of contact pressure, interface temperature, and surface roughness on thermal contact conductance between stainless steel surfaces under atmosphere condition[J]. International Journal of Heat and Mass Transfer, 2016, 94: 156-163.

[6]Yeh C L, Wen C Y, Chen F Y, et al. An experimental investigation of thermal contact conductance across bolted joints[J]. Experimental Thermal and Fluid Science, 2001, 25(6): 349-357.

[7]Xiao Y M, Sun H, Xu L, et al. Thermal contact conductance between solid interfaces under low temperature and vacuum[J]. The Review of Scientific Instruments, 2004, 75(9): 3074-3076.

[8]Ding C, Wang R S. Thermal contact conductance of stainless steel-GFRP interface under vacuum environment[J]. Experimental Thermal and Fluid Science, 2012, 42: 1-5.

[9]Zhu Z, Zhang L W, Wu Q K, et al. An experimental investigation of thermal contact conductance of Hastelloy C-276 based on steady-state heat flux method[J]. International Communications in Heat and Mass Transfer, 2013, 41: 63-67.

[10]Tang Q Y, He J J, Zhang W F. Influencing factors of thermal contact conductance between TC4/30CrMnSi interfaces[J]. International Journal of Heat and Mass Transfer, 2015, 86: 694-698.

[11]Sponagle B, Groulx D. Measurement of thermal interface conductance at variable clamping pressures using a steady state method[J]. Applied Thermal Engineering, 2016, 96: 671-681.

[12]孙静娜,刘楠楠,姚力,等. AZ31B镁合金轧制界面接触换热系数的实验研究[J]. 热加工工艺,2017,46(21): 101-105.

Sun J N, Liu N N, Yao L, et al. Experimental study on contact heat transfer coefficient of AZ31B magnesium alloy rolling interface[J]. Hot Working Technology, 2017, 46(21): 101-105.

[13]Volke P, Groche P. Interfacial heat transfer coefficients in cold forging of stainless steel [J]. International Journal of Material Forming, 2022, 15(3): 1-9.

[14]Tariq A, Asif M. Experimental investigation of thermal contact conductance for nominally flat metallic contact[J]. Heat and Mass Transfer, 2016, 52(2): 291-307.

[15]沈逸,曹家兴,黄永华. 采用叠片法的黄铜低温接触热阻测量[J]. 上海交通大学学报,2023,57(1): 76-83.

Shen Y, Cao J X, Huang Y H. Measurement of cryogenic thermal contact resistance of brass by lamination method[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 76-83.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com