[1]洪小英, 李亮亮, 王乐. 高温钛合金航空发动机叶盘锻造变形均匀性研究 [J]. 塑性工程学报, 2022, 29(9): 88-94.
Hong X Y, Li L L, Wang L. Study on forging deformation uniformity of high-temperature titanium alloy aero-engine blade disc [J]. Journal of Plasticity Engineering, 2022, 29(9): 88-94.
[2]乔旭东, 王鹏飞, 陈明和, 等. 航空发动机钛合金复杂型面零件的热拉深成形工艺 [J]. 锻压技术, 2023, 48(10): 60-66.
Qiao X D, Wang P F, Chen M H, et al. Hot drawing process on complex profile parts of titanium alloy for aero-engine [J]. Forging & Stamping Technology, 2023, 48(10): 60-66.
[3]Zhang H, Lin B, Sun Q, et al. The mechanism for annealing-induced ductile to brittle transition in a high-temperature titanium alloy and its mitigation [J]. Materials Science and Engineering: A, 2024,898: 146370.
[4]张海成, 昌春艳, 周杰. TC18钛合金热锻成形换热系数实验研究 [J]. 锻压技术, 2023, 48(4): 24-31.
Zhang H C, Chang C Y, Zhou J. Research on heat transfer coefficient in hot forging of TC18 titanium alloy [J]. Forging & Stamping Technology, 2023, 48(4): 24-31.
[5]Yin M, Luo H, Deng H, et al. Thermomechanical processing of near-β Ti-5Al-5Mo-5V-1Cr-1Fe alloys: Effect of deformation reduction on microstructures and mechanical properties [J]. Materials Science and Engineering: A, 2022, 853: 143786.
[6]王欣, 罗学昆, 宇波, 等. 航空航天用钛合金表面工程技术研究进展 [J]. 航空制造技术, 2022, 65(4): 14-24.
Wang X, Luo X K, Yu B, et al. Research progress on surface engineering technology of aerospace titanium alloys [J]. Aeronautical Manufacturing Technology, 2022, 65(4): 14-24.
[7]Li Z S, Xiong Z H, Yang P, et al. Simulation of texture evolution of large TC18 titanium alloy bar during multi-pass forging [J]. Rare Metal Materials and Engineering, 2022, 51(7): 2446-2453.
[8]同晓乐, 张明玉, 于成泉, 等. 不同轧制厚度TC4钛合金板材的组织与性能 [J]. 锻压技术, 2022, 47(6): 153-159.
Tong X L, Zhang M Y, Yu C Q, et al. Microstructure and properties of TC4 titanium alloy sheets with different rolling thicknesses [J]. Forging & Stamping Technology, 2022, 47(6): 153-159.
[9]颜孟奇, 陈立全, 杨平, 等. 热变形参数对TC18钛合金β相组织及织构演变规律的影响 [J]. 金属学报, 2021, 57(7): 880-890.
Yan M Q, Chen L Q, Yang P, et al. Effect of hot deformation parameters on the evolution of microstructure and texture of β phase in TC18 titanium alloy [J]. Acta Metallurgica Sinica, 2021, 57(7): 880-890.
[10]Quan G Z, Pan J, Zhang Z. Phase transformation and recrystallization kinetics in space-time domain during isothermal compressions for Ti-6Al-4V analyzed by multi-field and multi-scale coupling FEM [J]. Materials & Design, 2016, 94: 523-535.
[11]Xiao H, Fan X G, Zhan M, et al. Flow stress correction for hot compression of titanium alloys considering temperature gradient induced heterogeneous deformation [J]. Journal of Materials Processing Technology, 2021, 288: 116868.
[12]Wang X, Li H, Chandrashekhara K, et al. Inverse finite element modeling of the barreling effect on experimental stress-strain curve for high temperature steel compression test [J]. Journal of Materials Processing Technology, 2017, 243: 465-473.
[13]张海成, 昌春艳, 曾德涛, 等. 基于摩擦修正的单真空300M超高强度钢本构模型 [J]. 锻压技术, 2023, 48(6): 245-252.
Zhang H C, Chang C Y, Zeng D T, et al. Constitutive model on single vacuum 300M ultra-high strength steel based on friction correction [J]. Forging & Stamping Technology, 2023, 48(6): 245-252.
[14]Wen H, Jin J, Tang X, et al. Systematic analysis of distinct flow characteristics and underlying microstructural evolution mechanisms of a novel fine-grained P/M nickel-based superalloy during isothermal compression [J]. Journal of Materials Science & Technology, 2023, 162: 57-73.
[15]Han G, Lee B, Lee S, et al. Evaluation of plastic properties and equi-biaxial residual stress via indentation and ANN [J]. Materials & Design, 2024,239: 112745.
[16]Wei Z, Gao Q, Su X, et al. Flow characteristics, ANN-based prediction, 3D processing map, and interface microstructure of titanium/stainless steel bimetallic composite [J]. Journal of Materials Research and Technology, 2024,29:2918-2935.
[17]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming [J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143.
[18]Goetz R L, Semiatin S L. The adiabatic correction factor for deformation heating during the uniaxial compression test [J]. Journal of Materials Engineering and Performance, 2001, 10(6): 710-717.
[19]Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L [J]. Metallurgical and Materials Transactions A, 1994, 25: 2737-2752.
[20]高文理, 关宇飞. 5083铝合金热压缩应力-应变曲线修正与热加工图 [J]. 中国有色金属学报, 2018, 28(9): 1737-1745.
Gao W L, Guan Y F. Correction of flow stress-strain curve and processing maps of 5083 aluminum alloy during hot compression [J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1737-1745. [21]Luo R, Zhou Y, Gao P, et al. Characterization of hot workability of IN617B alloy using activation energy, Zener-Hollomon parameter and hot processing maps [J]. Journal of Materials Research and Technology, 2023, 26: 5141-5150.
[22]Tian Y, Zhang P, Zhao G, et al. A systematic study on thermo-mechanical behavior, processing maps and recrystallization mechanism of Incoloy825 superalloy during hot compression [J]. Journal of Materials Research and Technology, 2024, 28: 4551-4566.
[23]Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15: 1883-1892.
|