[1]Fu M W, Wang J L. Size effects in multi-scale materials processing and manufacturing [J]. International Journal of Machine Tools and Manufacture, 2021, 167(5): 103755.
[2]Xu J, Wang X, Wang C, et al. A review on micro/nanoforming to fabricate 3D metallic structures [J]. Advanced Materials, 2021, 33(6): 2000893.
[3]Tang X, Wang Z, Wang X, et al. Unraveling size-affected plastic heterogeneity and asymmetry during micro-scaled deformation of CP-Ti by non-local crystal plasticity modeling [J]. International Journal of Plasticity, 2023, 170(10): 103733.
[4]Zhang D, Li H, Guo X, et al. An insight into size effect on fracture behavior of Inconel 718 cross-scaled foils [J]. International Journal of Plasticity, 2022, 153(2): 103274.
[5]Liu W, Li X, Liu M, et al. Virtual laboratory enabled constitutive modelling of dual phase steels [J]. International Journal of Plasticity, 2024, 175: 103930.
[6]Sen I, Roy S, Wagner M F-X. Indentation response and structure-property correlation in a bimodal Ti-6Al-4V alloy [J]. Advanced Engineering Materials, 2017, 19(12): 1700298.
[7]Zhang R, Xu Z, Peng L, et al. Modelling of ultra-thin steel sheet in two-stage tensile deformation considering strain path change and grain size effect and application in multi-stage microforming [J]. International Journal of Machine Tools and Manufacture, 2021, 164(2): 103713.
[8]Feng Z Y, Li H, Zhang D, et al. Multi-aspect size effect transition from micro to macroscale: Modelling and experiment [J]. International Journal of Plasticity, 2022, 156(6): 103364.
[9]Doerner M F, Nix W D. A method for interpreting the data fromdepth-sensing indentation instruments [J]. Journal of Materials Research, 1986, 1(4): 601-609.
[10]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
[11]Hill R, Storkers B, Zdunek A B. A theoretical study of the Brinell hardness test [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1989, 423(1865): 301-330.
[12]Mesarovic S D, Fleck N A. Spherical indentation of elastic-plastic solids [J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1999, 455(1987): 2707-2728.
[13]Lee H, Lee J H, Pharr G M. A numerical approach to spherical indentation techniques for material property evaluation [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(9): 2037-2069.
[14]Cheng Y T, Cheng C M. Scaling relationships in conical indentation of elastic-perfectly plastic solids [J]. International Journal of Solids and Structures, 1999, 36(8): 1231-1243.
[15]Ahn J H, Kwon D. Derivation of plastic stress-strain relationship from ball indentations: Examination of strain definition and pileup effect [J]. Journal of Materials Research, 2001, 16(11): 3170-3178.
[16]Byun T S, Hong J H, Haggag F M, et al. Measurement of through-the-thickness variations of mechanical properties in SA508 Gr.3 pressure vessel steels using ball indentation test technique [J]. International Journal of Pressure Vessels and Piping, 1997, 74(3): 231-238.
[17]Cao Y P, Lu J. A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve [J]. Acta materialia, 2004, 52(13): 4023-4032.
[18]Collin J M, Mauvoisin G, Bartier O, et al. Experimental evaluation of the stress-strain curve by continuous indentation using different indenter shapes [J]. Materials Science and Engineering: A, 2009, 501(1-2): 140-145.
[19]Huber N, Tsakmakis C. Determination of constitutive properties fromspherical indentation data using neural networks. Part i: The case of pure kinematic hardening in plasticity laws [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1569-1588.
[20]Tyulyukovskiy E, Huber N. Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks [J]. Journal of Materials Research, 2006, 21(3): 664-676.
[21]张志杰, 蔡力勋, 陈辉, 等. 金属材料的强度与应力-应变关系的球压入测试方法 [J]. 力学学报, 2019, 51(1): 159-169.
Zhang Z J, Cai L X, Chen H, et al. Spherical indentation method to determine stress-strain relations and tensile strength of metallic materials [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 159-169.
[22]De Santana C, Misiolek W Z, Costa A L M. Numerical study on the surface morphology evolution and hardness during the spherical indentation of copper with plastic behavior described by different stress-strain relationships [J]. International Journal of Solids and Structures, 2022, 252(6): 111817.
[23]Bucaille J L, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters [J]. Acta Materialia, 2003, 51(6): 1663-1678.
[24]姚博, 蔡力勋, 包陈. 基于锥形压入的材料力学性能测试方法研究 [J]. 航空学报, 2013, 34(8): 1874-1883.
Yao B, Cai L X, Bao C. Research on acquisition of mechanical properties of materials based on conical indentation [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1874-1883.
[25]Chen H, Cai L. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle [J]. Acta Materialia, 2016, 121: 181-189.
[26]陈辉, 蔡力勋, 彭晖. 预测铝合金单轴力学性能的复合型双锥压入法 [J]. 机械工程学报, 2021, 57(20): 79-88.
Chen H, Cai L X, Peng H. Composite dual-conical indentation method for predicting the uniaxial mechanical properties of aluminum alloys [J]. Journal of Mechanical Engineering, 2021, 57(20): 79-88.
[27]石新正, 陈伟, 陈平, 等. 金属材料弹塑性参数仪器化聚集式VICKERS压入识别方法 [J]. 中国有色金属学报, 2019, 29(11): 2582-2593.
Shi X Z, Chen W, Chen P, et al. Instrumented aggregated Vickers indentation identification method for elastic-plastic parameters of metal materials [J]. Chinese Journal of Nonferrous Metals, 2019, 29(11): 2582-2593.
[28]陈辉, 傅作华, 陈得良, 等. 基于维氏压入理论模型的材料塑性参数与硬度一体化预测方法 [J]. 机械工程学报, 2023, 59(8): 132-141.
Chen H, Fu Z H, Chen D L, et al. Integrated prediction method of plastic parameters and hardness of materials based on VICKERS indentation theory model [J]. Journal of Mechanical Engineering, 2023, 59(8): 132-141.
[29]Goto K, Watanabe I, Ohmura T. Determining suitable parameters for inverse estimation of plastic properties based on indentation marks [J]. International Journal of Plasticity, Elsevier, 2019, 116: 81-90.
[30]Rudnytskyj A, Varga M, Krenn S, et al. Investigating the relationship of hardness and flow stress in metal forming [J]. International Journal of Mechanical Sciences, 2022, 232(5): 107571.
[31]Shield R T. On the plastic flow of metals under conditions of axial symmetry [J]. Proceedings of the Royal Society A: Mathematical, and Physical Sciences, 1955, 233(1193): 267-287.
[32]Brutti C. A theoretical model for elastic-perfectly plastic flat cylindrical punch indentation [J]. Mechanics of Materials, 2021, 155: 103770.
[33]Hu Z, Lynne K J, Markondapatnaikuni S P, et al. Material elastic-plastic property characterization by nanoindentation testing coupled with computer modeling [J]. Materials Science and Engineering: A, 2013, 587: 268-282.
[34]Midawi A R H, Simha C H M, Gesing M A, et al. Elastic-plastic property evaluation using a nearly flat instrumented indenter [J]. International Journal of Solids and Structures, 2017, 104-105: 81-91.
[35]陈辉,范中天,彭晖,等.预测金属材料拉伸性能的圆台形平面压入方法 [J/OL].工程力学:1-11 [2024-06-09].http://kns.cnki.net/kcms/detail/11.2595.o3.20230320.0921.
008.html.
Chen H, Fan Z T, Peng H, et al. Truncated cone flat indentation method for predicting mechanical properties of metallic materials [J/OL]. Engineering Mechanics: 1-11 [2024-06-09]. http://kns.cnki.net/kcms/detail/11.2595.o3.20230320.0921.
008.html.
[36]陈今龙, 周素洪, 叶兵, 等. 纳米压痕表征技术的应用与发展 [J]. 热加工工艺, 2018, 47(16): 13-17.
Chen J L, Zhou S H, Ye B, et al. Application and development of nanoindentation characterization technology [J]. Hot Working Technology, 2018, 47(16): 13-17.
[37]王赵鑫, 赵宏伟. 微纳米压痕测试技术: 发展与应用 [J]. 航空学报, 2021, 42(10): 524815.
Wang Z X, Zhao H W. Micro- and nanoindentation testing techniques: Development and application [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524815.
[38]Dao M, Chollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Materialia, 2001, 49(19): 3899-3918.
[39]孙银莎, 贾云飞, 苑光健, 等. 超声表面滚压加工纯钛梯度材料的力学性能反演与有限元分析 [J]. 机械工程材料, 2021, 45(10): 58-65.
Sun Y S, Jia Y F, Yuan G J, et al. Inversion and finite element analysis of mechanical properties of pure titanium gradient material by ultrasonic surface rolling processing [J]. Materials for Mechanical Engineering, 2021, 45(10): 58-65.
[40]Bucaille J L, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters [J]. Acta Materialia, 2003, 51(6): 1663-1678.
[41]Pelletier H. Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation [J]. Tribology International, 2006, 39(7): 593-606.
[42]Kim B M, Lee C J, Lee J M. Estimations of work hardening exponents of engineering metals using residual indentation profiles of nano-indentation [J]. Journal of Mechanical Science and Technology, 2010, 24: 73-76.
[43]Sen I, Roy S, Wagner M F X. Indentation response and structure-property correlation in a bimodal Ti-6Al-4V alloy [J]. Advanced Engineering Materials, 2017, 19(12): 1700298.
[44]Demir E, Raabe D, Zaafarani N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography [J]. Acta Materialia, 2009, 57(2): 559-569.
[45]Liu H, Ma J, Tang A, et al. True stress-strain curve extraction from ion-irradiated materials via small tensile, small punch and nanoindentation tests: Method development and accuracy/consistency verification [J]. Nuclear Fusion, 2020, 60(5): 056012.
[46]He Z, Zhang K, Zhu H, et al. An anisotropic constitutive model for forming of aluminum tubes under both biaxial tension and pure shear stress states [J]. International Journal of Plasticity, 2022, 152: 103259.
[47]Hou Y, Min J, El-Aty A A, et al. A new anisotropic-asymmetric yield criterion covering wider stress states in sheet metal forming [J]. International Journal of Plasticity, 2023, 166(5): 103653.
[48]Yang H, Li H, Ma J, et al. Temperature dependent evolution of anisotropy and asymmetry of α-Ti in thermomechanical working: Characterization and modeling [J]. International Journal of Plasticity, 2020, 127: 102650.
[49]Li F F, Fang G. Modeling of 3D plastic anisotropy and asymmetry of extruded magnesium alloy and its applications in three-point bending [J]. International Journal of Plasticity, 2020, 130(2): 102704.
[50]Yang H, Li H, Sun H, et al. Study of the mechanism of the strength-ductility synergy of α-Ti at cryogenic temperature via experiment and atomistic simulation [J]. International Journal of Plasticity, 2024, 177: 103971.
[51]Yang H, Li H, Sun H, et al. Anisotropic plasticity and fracture of alpha titanium sheets from cryogenic to warm temperatures [J]. International Journal of Plasticity, 2022, 156(6): 103348.
[52]Gu B, He J, Li S, et al. Anisotropic fracture modeling of sheet metals: From in-plane to out-of-plane [J]. International Journal of Solids and Structures, 2020, 182-183: 112-140.
[53]李梦媛, 刘楚明, 张冬冬, 等. T5热处理对Mg-Gd-Y-Zr合金筒形件拉压不对称性的影响 [J].锻压技术, 2022, 47(12): 193-199.
Li M Y, Liu C M, Zhang D D, et al. Influence of T5 heat treatment on tension-compression asymmetry for Mg-Gd-Y-Zr-Ag alloy cylindrical parts [J]. Forging & Stamping Technology, 2022, 47(12): 193-199.
[54]Hu Q, Yoon J W. Anisotropic distortional hardening based on deviatoric stress invariants under non-associated flow rule [J]. International Journal of Plasticity, 2022, 151: 103214.
[55]Fan X G, Jiang X Q, Zeng X, et al. Modeling the anisotropy of hot plastic deformation of two-phase titanium alloys with a colony microstructure [J]. International Journal of Plasticity, 2018, 104(2): 173-195.
[56]Li H, Zhang H Q, Yang H, et al. Anisotropic and asymmetrical yielding and its evolution in plastic deformation: Titanium tubular materials [J]. International Journal of Plasticity, 2017, 90: 177-211.
[57]Suwas S, Lahiri I, Ray R, et al. The Knoop hardness yield locus of Ti-24Al-11Nb alloy [J]. Materials Letters, 2003, 57(21): 3251-3256.
[58]Mondal C, Singh A K, Mukhopadhyay A K, et al. Effects of different modes of hot cross-rolling in 7010 aluminum alloy: Part II. Mechanical properties anisotropy [J]. Metallurgical and Materials Transactions A, 2013, 44(6): 2764-2777.
[59]Mishra T, De Rooij M, Shisode M, et al. Characterization of yield criteria for zinc coated steel sheets using nano-indentation with Knoop indenter [J]. Surface and Coatings Technology, 2020, 381: 125110.
[60]Zecevic M, Cawkwell M J, Ramos K J, et al. Simulating Knoop hardness anisotropy of aluminum and β-HMX with a crystal plasticity finite element model [J]. International Journal of Plasticity, 2021, 144: 103045.
[61]Satoek R, Pepelnjak T, Starman B. Characterisation of out-of-plane shear behaviour of anisotropic sheet materials based on indentation plastometry [J]. International Journal of Mechanical Sciences, 2023, 253: 108403.
[62]Jeong K, Lee K, Lee S, et al. Deep learning-based indentation plastometry in anisotropic materials [J]. International Journal of Plasticity, 2022, 157(8): 103403.
[63]Jeong K, Lee K, Kwon D, et al. Parameter determination of anisotropic yield function using neural network-based indentation plastometry [J]. International Journal of Mechanical Sciences, 2023: 108776.
|