Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Necking and thickening forming on ultrasonic vibration-electric pulse coupling for aluminum alloy thin-walled tube
Authors: Fan Yubin1  Xu Xuefeng1  Tao Ruichen1  Luo Ming2  Wei Liming1  Li Xiaodong1  Xiao Jie1  Zeng Xiang1 
Unit: 1.School of Aviation Manufacturing Engineering  Nanchang Hangkong University 2. Key Laboratory of High Performance Manufacturing for Aero Engine (Ministry of Industry and Information Technology)  Northwestern Polytechnical University 
KeyWords: ultrasonic vibration  electric pulse  thin-walled tube  necking and thickening forming  thickening rate 
ClassificationCode:TG306
year,vol(issue):pagenumber:2024,49(8):53-58
Abstract:

 In aircraft, the connection type of necked and thickened tube threads can improve the weight gain problem caused by traditional necked tie rod riveting, and the thickening rate of tube is a vital index of necking and thickening forming. Therefore, in order to increase the thickness of the necked and thickened tube, the necking and thickening forming method of ultrasonic vibration-electric pulse coupling was proposed. Firstly, the necking and thickening forming experiments with electric pulse coupling for 5A02 aluminum alloy thin-walled tubes were carried out. And it is found that increasing the current intensity is beneficial to increase the tube temperature, reduce the deformation resistance, avoid the buckling defect of tube as well as increase the tube thickness. Then, the necking and thickening forming experiments with ultrasonic vibration-electric pulse coupling for 5A02 aluminum alloy thin-walled tubes were carried out. The results show that the formed tubes with ultrasonic vibration begin to thicken earlier, and the average thickening rate of the thickened area and the difference of average thickening rate between the thickened and necked areas is greater after forming, which illustrates that the ultrasonic vibration-electric pulse coupling process is beneficial for thickening forming.

Funds:
国家科技重大专项(J2019-Ⅶ-0014-0154);江西省自然科学基金资助项目(20224BAB214050);航空发动机高性能制造工信部重点实验室开放课题资助项目(HPM-2020-01)
AuthorIntro:
作者简介:范玉斌(1987-),男,博士,副教授 E-mail:yubin_fan@nchu.edu.cn 通信作者:徐雪峰(1983-),男,博士,教授 E-mail: xfwinzy@163.com
Reference:

 [1]刘国勇,陈泽民,朱世安,等.多孔薄壁铝型材挤压模具结构[J].锻压技术,202348(6)162-170.


Liu GuoyongChen ZeminZhu Shianet al. Structure of extrusion mold for porous thin-walled aluminum profiles[J]. Forging & Stamping Technology202348(6)162-170.


[2]李轩颖,徐雪峰,王继,.基于薄壁环压缩的铝合金管材应力-应变行为[J].中国有色金属学报,2017,27(10):2020-2028.


Li X Y, Xu X F, Wang J, et al.Stress-strain behavior of aluminum alloy pipe based on thin-walled ring compression[J].The Chinese Journal of Nonferrous Metals, 2017,27(10):2020-2028.


[3]林继彬,阮金华,张宏昱,. 电辅助不锈钢/碳钢轧制复合厚度比变化规律[J].锻压技术,202348(9)98-107.


Lin J BRuan J HZhang H Yet al. Change law on composite thickness ratio in electrically assisted rolling for stainless steel/carbon steel[J]. Forging & Stamping Technology202348(9)98-107.


[4]易宏,徐雪峰,李晓冬,.电辅助5A02薄壁管缩口增厚成形数值模拟与实验研究[J].塑性工程学报,2022,29(12):27-32.


Yi H, Xu X FLi X Det al. Numerical simulation and experimental study on electric-assisted necking and thickening forming for 5A02 thin-walled tube[J]. Journal of Plasticity Engineering202229(12): 27-32.


[5]Shao G D,Li H W,Zhen M. A review on ultrasonic-assisted forming: Mechanism, model and process[J]. Chinese Journal of Mechanical Engineering,2021,34(1):147-170.


[6]Ehsan S,Mohammad L,Iman T. Numerical and experimental investigation of the ultrasonic vibration effects on the tube hydroforming process in a die with a square cross-section[J]. International Journal of Advanced Manufacturing Technology,2023,126(1-2):197-207.


[7]Xu T, Dai Z C, Huang J B, et al. Inhibition of adhesive wear in tantalum cup deep drawing by ultrasonic vibration-assisted forming technology[J]. International Journal of Advanced Manufacturing Technology,2023,125(9-10):4353-4361.


[8]Wan W Q, Cheng J F, Xu L H, et al. Investigation on friction characteristics of micro double cup extrusion assisted by different ultrasonic vibration modes[J]. International Journal of Advanced Manufacturing Technology,2022,123(7-8):2549-2560.


[9]Zhai J Q, Guan Y J, Li Y, et al. The surface effect of ultrasonic vibration in double cup extrusion test[J]. Journal of Materials Processing Technology,2022,299:117344.


[10]Liang X, Fan C T, Fu J N, et al. Improve the forming ability of Al-based metallic glass under ultrasonic vibration at room temperature[J]. Frontiers in Materials,2021,8:746955.


[11]Lin J, Li J, Liu T, et al. Evaluation of friction reduction and frictionless stress in ultrasonic vibration forming process[J]. Journal of Materials Processing Technology,2021,288: 116881.


[12]Zhuang X C, Wang J P, Zheng H, et al. Forming mechanism of ultrasonic vibration assisted compression[J]. Transactions of Nonferrous Metals Society of China,2015,25(7):2352-2360.


[13]温彤,陈霞.超声振动对轻合金塑性压缩变形过程的影响[J].机械科学与技术,2013,32(2):221-224.


Wen T, Chen X. Effects of the ultrasonic vibration on the plastic deformation behavior in the compression process of light alloys[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(2): 221-224.


[14]黄志祥,陈文亮,姜丽萍,.超声振动对钛合金铆钉压铆力的影响[J].航空制造技术,2014,454(10):79-82.


Huang Z X, Chen W L, Jiang L P, et al. Influences of ultrasonic vibration on riveting force of titanium alloy rivet[J]. Aeronautical Manufacturing Technology, 2014,454(10):79-82.


[15]曹伯楠,孟宝,赵越超,等.特种能场辅助微塑性成形技术研究及应用[J].精密成形工程,2019,11(3):14-27.


Cao B N, Meng B, Zhao Y C, et al. Research and application of energy field assisted microforming technology[J]. Journal of Netshape Forming Engineering,2019,11(3):14-27.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com