Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Rolling deformation and microstructure properties on 7050 aluminum alloy under different rolling deformation amounts
Authors: Zhou Xiaoping1  Tian Zhuangzhuang1  Liu Yufen2 
Unit: 1.School of Telecommunications and Intelligent Manufacturing  Zhengzhou Sias University  2.School of Materials Science and Engineering  Henan University of Science and Technology 
KeyWords: 7050 aluminum alloy  extrusion state  rolling deformation amount  phase composition  microstructure  mechanical properties 
ClassificationCode:TG146.21; TG156.92
year,vol(issue):pagenumber:2024,49(8):80-87
Abstract:

 The influences of rolling deformation amount (25%-75%) on the phase composition, microstructure and mechanical properties of 7050 aluminum alloy were studied by X-ray diffraction analyzer, optical microscope, scanning electron microscope and tensile testing machine. The results show that the as-extruded 7050 aluminum alloy and rolled 7050 aluminum alloy with the rolling deformation amount of 25%-75% are mainly composed of α-Al phase, MgZn2 phase and Al2MgCu phase. As the rolling deformation amount increases from 25% to 75%, the microhardness, tensile strength and yield strength of 7050 aluminum alloy in three directions first increase and then decrease, and the maximum hardness value is achieved at the rolling deformation amount of 55%. At this time, 7050 aluminum alloy has a large elongation after fracture, which is mainly related to the smaller recrystallized grains, MgZn2 phase and Al2MgCu phase, higher dislocation density, and the presence of cellular substructures in 7050 aluminum alloy at the rolling deformation amount of 55%. When the rolling deformation amount increases to 75%, the grain coarsening and growth occur, at the same time,the dislocation density in the matrix structure decreases, resulting in a decrease in micro hardness and strength.

Funds:
河南省科技攻关计划项目(222102210282)
AuthorIntro:
作者简介:周晓平(1984-),女,硕士,副教授 E-mail:vvdtop@163.com
Reference:

 [1]侯陇刚, 刘明荔, 王新东, . 高强7050铝合金超低温大变形加工与组织、性能调控[J].金属学报, 2017, 53(9):1075-1090.


Hou L G, Liu M L, Wang X D, et al. Ultra low temperature and large deformation processing of high-strength 7050 aluminum alloy and control of microstructure and properties [J]. Acta Metallurgica Sinica, 2017, 53 (9): 1075-1090.


[2]张新明,邓运来,张勇.高强铝合金的发展及其材料的制备加工技术[J].金属学报, 2015, 51(3): 257-271.


Zhang X M, Deng Y L, Zhang Y. Development of high-strength aluminum alloys and their material preparation and processing techniques [J]. Acta Metallurgica Sinica, 2015, 51 (3): 257-271.


[3]刘平, 刘晓艳, 崔振华, . 中温轧制对Al-Cu-Mg-Ag耐热铝合金组织与抗腐蚀性能的影响[J]. 河北工程大学学报(自然科学版),2018,35(3):97-100.


Liu P, Liu X Y, Cui Z H, et al. The effect of medium temperature rolling on the microstructure and corrosion resistance of Al-Cu-Mg-Ag heat-resistant aluminum alloy [J]. Journal of Hebei Engineering UniversityNatural Science Edition, 2018,35 (3): 97-100.


[4]徐春杰, 杨怡, 马东, . 轧制及热处理对7055铝合金组织与性能的影响[J].特种铸造及有色合金, 2023,43(2):191-196.


Xu C J, Yang Y, Ma D, et al. The effect of rolling and heat treatment on the microstructure and properties of 7055 aluminum alloy [J]. Special Casting and Nonferrous Alloy, 2023,43 (2): 191-196.


[5]Wang T, Huang Y F, Ma Y Z, et al. Microstructure and mechanical properties of powder metallurgy 2024 aluminum alloy during cold rolling[J]. Journal of Materials Research and Technology, 2021,153337-3348.


[6]武磊, 覃铭, 何兵, . 异速比对龙形轧制7075铝厚板变形的影响研究[J]. 热处理技术与装备, 2023, 44(4):11-15.


Wu L, Qin M, He B, et al. Research on the effect of different speed ratio on the deformation of 7075 aluminum thick plate in dragon rolling [J]. Heat Treatment Technology and Equipment, 2023, 44 (4): 11-15.


[7]李姚君, 何方有, 郜均虎, . 轧制变形量对2A14铝合金组织及性能的影响[J].冶金管理, 2020(15): 16-17.


Li Y J, He F Y, Gao J H, et al. The effect of rolling deformation on the microstructure and properties of 2A14 aluminum alloy [J]. China Steel Focus, 2020 15:16-17.


[8]Ma C Q, Hou L G, Zhang J S, et al. Effect of deformation routes on the microstructures and mechanical properties of the asymmetrical rolled 7050 aluminum alloy plates[J]. Materials Science & EngineeringA,2018,733: 307-315.


[9]武磊, 何兵, 石伟和, . 轧制轧制方案对7075铝合金T6板的影响[J]. 锻压技术, 2022, 47(11):159-164.


Wu L, He B, Shi W H, et al. The effect of rolling scheme on 7075 aluminum alloy T6 plate [J]. Forging & Stamping Technology, 2022, 47 (11): 159-164.


[10]GB/T 228.12021, 金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.12021, Metallic materialsTensile testingPart 1: Method of test at room temperature[S].


[11]Li X Y, Xia W J, Yan H G, et al. Dynamic recrystallization behaviors of high Mg alloyed Al-Mg alloy during high strain rate rolling deformation[J]. Materials Science & EngineeringA, 2019,753: 59-69.


[12]李小刚, 闫亮明, 胡强, . 轧制轧制变形对Al-Zn-Mg-Cu合金中S相破碎情况的影响[J]. 锻压技术, 2022,47(1):124-131.


Li X G, Yan L M, Hu Q, et al. The effect of rolling deformation on the fragmentation of S phase in Al-Zn-Mg-Cu alloy [J]. Forging & Stamping Technology, 2022, 47 (1): 124-131.


[13]孙玉崇, 高安妮, 徐振, . 轧制工艺对7050铸轧板组织及性能的影响[J].辽宁科技大学学报, 2022,45(2):99-103.


Sun Y C, Gao A N, Xu Z, et al. The influence of rolling process on the microstructure and properties of 7050 cast rolled plates [J]. Journal of Liaoning University of Science and Technology, 2022, 45 (2): 99-103.


[14]Pu N X, Qiong W, Sheng R Y, et al. Research on machining deformation of aluminum alloy rolled ring induced by residual stress[J]. The International Journal of Advanced Manufacturing Technology, 2023,125(11-12): 5669-5680.


[15]Leng J F, Dong Y F, Ren B H, et al. Effect of rolling deformation on microstructure and properties of 7085 aluminum alloy[J]. Physics of Metals and Metallography, 2021,122(14):1-8.


[16]Jiang F Q, Tang L, Huang J W, et al. Influence of equal channel angular pressing on the evolution of microstructures, aging behavior and mechanical properties of as-quenched Al-6.6Zn-1.25Mg alloy[J]. Materials Characterization,2019,153: 1-13.


[17]Lin S P, Nie Z R, Huang H, et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Materials & Design, 2010, 31(3): 1607-1612.


[18]左锦荣, 侯陇刚,史金涛,. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响[J]. 金属学报,2016,52(9):1105-1114.


Zuo J R, Hou L G, Shi J T, et al. The evolution of precipitates and grain structure in high-strength aluminum alloy during two-stage rolling deformation process and their impact on properties [J]. Acta Metallurgica Sinica, 2016,52 (9): 1105-1114.


[19]昌江郁, 陈送义, 陈康华, . 7056铝合金厚板轧制变形不均匀性的实验研究与数值模拟[J].中南大学学报(自然科学版),2018,49(8):1914-1921.


Chang J Y, Chen S Y, Chen K H, et al. Experimental study and numerical simulation of uneven deformation in 7056 aluminum alloy thick plate rolling [J]. Journal of Central South University(Natural Science Edition), 2018,49 (8): 1914-1921.


[20]Yang H F, Huang R S, Zhang Y L, et al. Effect of rolling deformation and passes on microstructure and mechanical properties of 7075 aluminum alloy[J]. Ceramics International,2023,49(1): 1165-1177.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com