Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure and properties of CuCrSnZnSi copper alloy for lead frames
Authors: Liu Xiaobin1  Zhang Yansong1  Wang Ruolan1  Feng Hongwei1  Deng Lixun1  Wu Zheng1   Gong Liukui1 2  Huang Wei1 
Unit: 1.Ningbo Branch of Chinese Academy of Ordnance Science 2.Ningbo Surface Engineering Research Institute Co.  Ltd. 
KeyWords: CuCrSnZnSi copper alloy  tensile strength  conductivity  microstructure  strengthening mechanism 
ClassificationCode:TG146.1
year,vol(issue):pagenumber:2024,49(8):205-213
Abstract:

 The microstructure and strengthening mechanism of Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si alloy were studied using SEM, EBSD, XRD, TEM as well as mechanical and electrical performance testing methods. The results show that the tensile strength, yield strength, microhardness, elongation after fracture and conductivity of as-cast Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si alloy after hot rolling+water cooling, cold rolling aging, cold rolling and annealing treatment are 483 MPa, 452 MPa, 178.0 HV0.2, 9% and 69.6%IACS, respectively. The average grain size of the alloy after annealing treatment is about 1.20 μm. The local strain is relatively high, with a grain dislocation angle of 17.15° and a strong preferred orientation, mainly characterized by Goss texture ({110}<001>) and Copper texture ({112}<11-1>). The elements Sn and Zn are dispersed in the matrix in a solid solution form, while the element Cr is distributed in the matrix in a nano phase form, the grain boundary strengthening is the main strengthening mechanism of annealed Cu-0.2Cr-0.252Sn-0.166Zn-0.014Si alloy, with relatively weaker element Cr nanoprecipitation strengthening, elements Sn and Zn solid solution strengthening and dislocation strengthening.

Funds:
宁波市重点研发计划(2023Z096,2023Z092);宁波市科技创新2025重大专项(2019B10083)
AuthorIntro:
作者简介:刘晓彬(1987-),女,硕士,副研究员 E-mail:47995715@qq.com 通信作者:黄伟(1981-),男,博士,研究员 E-mail:hw315@126.com
Reference:

 [1]刘鸿智, 童景琳. 冷轧变形对引线框架用Cu-Ni-Si合金硬度与导电性能的影响[J]. 热加工工艺, 2024,53(10):130-132,136.


Liu H Z, Tong J L. Effects of cold rolling deformation on hardness and conductivity of Cu-Ni-Si alloy for lead frame[J]. Hot Working Technology, 2024,53(10):130-132,136.

[2]李翰冬, 张振峰, 刘志林, 等. 引线框架用C19210铜合金异形带连续挤压有限元模拟[J]. 塑性工程学报, 2023,30(9):17-26.

Li H D, Zhang Z F, Liu Z L, et al. Finite element simulation of continuous extrusion of C19210 copper alloy special-strip for lead frame[J]. Journal of Plasticity Engineering, 2023,30(9):17-26.

[3]张洪涛. 高性能铜合金成分与工艺机器学习理性设计研究[D]. 北京: 北京科技大学, 2023.

Zhang H T. Rational Design of Composition and Process for High Performance Copper Alloys via Machine Learning[D]. Beijing: University of Science and Technology Beijing, 2023.

[4]董鑫, 曹立军, 阮金琦, 等. 高性能Cu-Ni-Co-Si引线框架材料研究进展[J]. 兵器材料科学与工程, 2022,45(6):163-170.

Dong X, Cao L J, Ruan J Q, et al. Research progress on high-performance Cu-Ni-Co-Si alloy for lead frame[J]. Ordnance Material Science and Engineering, 2022,45(6):163-170.

[5]于国军, 田教锋, 孙天祥. 集成电路中的引线框架质量影响分析[J]. 集成电路应用, 2023,40(7):41-43.

Yu G J, Tian J F, Sun T X. Analysis of the quality impact of lead frame in integrated circuits[J]. Application of IC, 2023,40(7):41-43.

[6]祝儒飞, 刘宇宁, 张嘉凝, 等. 蚀刻与冲压用铜合金板带的分条变形及应力分布[J]. 稀有金属, 2023,47(7):995-1004.

Zhu R F, Liu Y N, Zhang J N, et al. Slitting deformation and stress distribution of copper alloy strip for etching and stamping[J]. Chinese Journal of Rare Metals, 2023,47(7):995-1004.

[7]宋永沙. 新型(IC)引线框架材料铜合金的研制[J]. 湖南冶金, 1992(4):11-13.

Song Y S. Development of a new type (IC) lead frame material copper alloy[J]. Hunan Metallurgy, 1992(4):11-13.

[8]付锐, 冯涤, 陈希春, 等. Ni42引线框架材料的研究进展[J]. 材料导报, 2007,21(11):85-87.

Fu R, Feng D, Chen X C, et al. Research progress on Ni42 lead frame materials[J]. Material Introduction, 2007,21(11):85-87.

[9]苏娟华, 许莹莹, 董企铭, 等. Cu-Fe-P合金引线框架材料残余应力的有限元分析[J]. 热加工工艺, 2006,35(12):7-10.

Su J H, Xu Y Y, Dong Q M, et al. Finite element analysison residual stress of Cu-Fe-P alloy for lead frame[J]. Hot Working Technology, 2006,35(12):7-10.

[10]Zhang C Z, Chen C G, Lu T X, et al. Microstructure and mechanical properties of Cu-Fe alloys via powder metallurgy[J]. Materials Science Forum, 2021,1016:1727-1732.

[11]武安琪, 王松伟, 陈帅峰, 等. 引线框架用铜镍硅合金研究现状及发展趋势[J]. 铜业工程, 2021(4):14-20.

Wu A Q, Wang S W, Chen S F, et al. Research status and development trend of copper-nickel-silicon alloy for lead frame[J]. Copper Engineering, 2021(4):14-20.

[12]Gong L K, Huang Y Q, Han Z, et al. Texture evolution and strengthening mechanism of CuCrZr alloys during cold rolling[J]. Vacuum, 2024,221:112908.

[13]龚留奎, 袁继慧, 罗富鑫, 等. 合金化对Cu-Cr-Zr-Ti合金组织与性能的影响[J]. 金属热处理, 2018,43(8):7-12.

Gong L K, Yuan J H, Luo F X, et al. Effect of alloying on microstructure and properties of Cu-Cr-Zr-Ti alloy[J]. Heat Treatment of Metals, 2018,43(8):7-12.

[14]Qu J P, Yue S P, Zhang W S, et al. Optimization of microstructure and properties of as-cast various Si containing Cu-Cr-Zr alloy by experiments and first-principles calculation[J]. Materials Science and Engineering:A, 2022,831:142353.

[15]Sasaki H, Akiya S, Oba Y. Characterization of precipitated phase in Cu-Ni-Si alloy by small-angle X-ray scattering, small angle neutron scattering and atom probe tomography[J]. Materials transactions, 2022,63(10):1384-1389.

[16]Ne D. Mechanical behavior of materials[J]. Materials Today, 2005,8(11):59-59.

[17]Freudenberger J, Lybimova, J, Gaganoy A, et al. Non-destructive pulsed field CuAg-solenoids[J]. Materials Science and Engineering:A, 2005,527:2004-2013.

[18]Niels H. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004,51:801-806.

[19]Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment[J]. Journal of Materials Research, 2017,32:1324-1332.

[20]Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram[J]. Acta Metallurgica, 1953,1(1):22-31.

[21]Williamson G K, Smallman R E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum III[J]. Philosophical Magazine, 1956,1(1):34-46.

[22]Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014,62(5):141-155.

[23]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology, 1999,15(1):30-36.

[24]Gottstein G. Physical foundations of materials science[J]. Materials Today, 2004,7(7):197-302.

[25]Mabuchi M, Higashi K. Strengthening mechanism of Mg-Si alloy[J]. Acta Materialia, 1996,44(11):4611-4618.

[26]Neite G, Nembach E. Hardening mechanisms in the nimonic alloy[J]. Strength of Metals and Alloys, 1985(12-16):417-422.

[27]Han K, Embury J D, Sims J R, et al. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J]. Materials Science and Engineering: A, 1999,267(1):99-114.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com