Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Dynamic recrystallization behavior and grain size prediction on 30Cr1MoV steel for high and medium pressure rotors
Authors: Pang Jin He Wenwu Zhao Jinhua Yang Bin 
Unit: School of Materials Science and Engineering Taiyuan University of Science and Technology 
KeyWords: 30Cr1MoV steel dynamic recrystallization deformation temperature grain size microstructure 
ClassificationCode:TG142.5
year,vol(issue):pagenumber:2024,49(8):239-248
Abstract:

 In order to study the dynamic recrystallization rule of 30Cr1MoV steel for high and medium pressure rotors during thermal deformation process, the uniaxial compression test was carried out by thermal simulation tester Gleeble-1500D under the deformation temperature of 900-1200 , the strain rate of 0.01-1 s-1, and the true strain of 0.693, and the test data were organized and plotted to obtain the true stress-true strain curve for 30Cr1MoV steel. Then, the characteristic values on the curve were collected, and the material coefficients were calculated by linear fitting to construct the constitutive equation and dynamic recrystallization kinetic model of 30Cr1MoV steel. Furthermore, the average grain size was measured from the metallographic photographs of specimens, and a dynamic recrystallization grain size model was established, which was imported into the material library of software Deform-3D for uniaxial compression forming simulation. The results show that the error between the simulation and test results is controlled within 8%, which verifies the accuracy of the dynamic recrystallization model and indicates that the dynamic recrystallization behavior of 30Cr1MoV steel can be effectively predicted by this model in the subsequent process tests.

Funds:
山西省重点学科建设经费资助项目(2019KJ029)
AuthorIntro:
作者简介:庞锦(1997-),男,硕士研究生 E-mail:aniu19970418@126.com 通信作者:何文武(1977-),男,博士,教授 E-mail:hwwssl@126.com
Reference:

 [1]陈敏.超超临界汽轮机高中压转子用材的现状研究[J].东北电力技术,2021,42(5):1-517.


Chen M. Research on the current situation of materials for high and medium pressure rotors of ultra supercritical steam turbines [J]. Northeast Electric Power Technology, 2021,42 (5): 1-5,17.


[2]Ma J N, Liu F L, Chen Y, et al. High/very-high fatigue properties and microstructure evolutions of 9Cr3W3Co turbine rotor steel at room temperature and 650 [J]. Materials Science & EngineeringA,2023,885145605.


[3]李佳宸, 吴晓东, 廖斌, . 7055铝合金中低比例动态再结晶的模拟[J]. 中国有色金属学报(英文版),2021,31(7):1902-1915.


Li J C, Wu X D, Liao B, et al. Simulation of dynamic recrystallization in 7055 aluminum alloy with low ratio[J]. China Journal of Nonferrous Metals (English Edition),2021,31(7):1902-1915.


[4]郑跃武,李玉贵,武佳奇,等.Incoloy825高温合金热变形行为及动态再结晶模型[J].塑性工程学报,2023,30(1):168-175.


Zheng Y W, Li Y G, Wu J Q, et al. Thermal deformation behavior and dynamic recrystallization model of Incoloy825 high temperature alloy[J]. Journal of Plasticity Engineering,2023,30(1):168-175.


[5]郭卜瑞. 40Cr钢热变形行为研究及微观组织演变模拟[D].哈尔滨:哈尔滨工业大学,2022.


Guo B R. Research on Hot Deformation Behavior and Simulation of Microstructural Evolution of 40Cr Steel [D]. Harbin: Harbin Institute of Technology, 2022.


[6]胡建军,李小平.DEFORM-3D塑性成形CAE应用教程[M].北京:北京大学出版社,2020.


Hu J J, Li X P. DEFORM-3D Plastic Forming CAE Application Tutorial [M]. Beijing: Peking University Press,2020.


[7]陈飞,张晓峰,党淑娥,. 铸态ER8钢高温塑性变形行为及热加工图[J]. 锻压技术,2023,48(8):224-230.


Chen F, Zhang X F, Dang S E, et al. High temperature plastic deformation behavior and hot working diagram of as cast ER8 steel [J]. Forging & Stamping Technology, 2023,48 (8): 224-230.


[8]柯雨蛟,陈国文,沈国劬,. COST FB2钢热变形行为及热加工图[J]. 塑性工程学报,2023,30(7):92-101.


Ke Y J, Chen G W, Shen G Q, et al. Hot deformation behavior and hot working diagram of COST FB2 steel [J]. Journal of Plasticity Engineering, 2023,30 (7): 92-101.


[9]杨卫民,王金亮,陈慧琴.316H不锈钢动态再结晶动力学模型计算方法[J].塑性工程学报,2022,29(11):165-172.


Yang W M, Wang J L, Chen H Q. Calculation method for dynamic recrystallization kinetics model of 316H stainless steel [J]. Journal of Plasticity Engineering, 2022,29 (11): 165-172.


[10]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3-4):187-194.


[11]刘辉,江莉,何欢欢. 基于流变行为和热加工图的全地形车履带板锻造工艺[J]. 锻压技术,2023,48(8):17-24.


Liu H, Jiang L, He H H. Forging process for track shoes of all terrain vehicles based on rheological behavior and thermal processing diagrams [J]. Forging & Stamping Technology, 2023,48 (8): 17-24.


[12]陈学文,陈天安,朱美玲,. 45Cr4NiMoV合金钢热变形的本构模型[J]. 金属热处理,2015,40(2):152-155.


Chen X W, Chen T A, Zhu M L, et al. A constitutive model for hot deformation of 45Cr4NiMoV alloy steel [J]. Heat Treatment of Metals, 2015,40 (2): 152-155.


[13]Avrami M, Chem J. Kinetics of phase change II. Transformation-time relations for random distribution of nuclei [J].The Journal of Chemical Physics,1940,8:212-224.


[14]鲁龙龙,张彦敏,权思佳,等.双态组织Ti80合金的动态再结晶行为[J].稀有金属材料与工程,2021,50(8):2979-2985.


Lu L L, Zhang Y M, Quan S Jet al. Dynamic recrystallization behavior of Ti80 alloy with bimodal organization[J]. Rare Metal Materials and Engineering,2021,50(8):2979-2985.


[15]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology, 2013,6(11): 1072-1081.


[16]Mcqueen H J, Sauerborn M.Hot workability and extrusion modelling of magnesium alloys[J].Zeitschrift für Metallkunde, 2005, 96(6):638-644.


[17]Poliak E I, Jonas J J.A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J].Acta Materialia, 1996, 44(1):127-136.


[18]Wahabi E M,Cabrera J,Prado J.Hot working of two AISI 304 steels: A comparative study[J].Materials Science EngineeringA,2003,343(1-2):116-125.


[19]Zener C, Hollomon J H.Problems in non-elastic deformation of metals[J].Journal of Applied Physics, 1946, 17(2):69-82.


[20]Chen F,Cui Z S,Chen S J.Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization[J].Materials Science EngineeringA,2011,528(15):5073-5080.


[21]王忠堂,梁海成,李艳娟,.AZ31镁合金热变形动态再结晶晶粒尺寸预测模型[J].塑性工程学报,2023,30(7):85-91.


Wang Z T, Liang H C, Li Y J,et al. Dynamic recrystallization grain size prediction model for hot deformation of AZ31 magnesium alloy[J]. Journal of Plasticity Engineering,2023,30(7):85-91.


[22]潘龙博,储滔,张硕,等.30CrNi3MoV钢动态再结晶行为及其模型的构建[J].金属热处理,2021,46(7):23-30.


Pan L B, Chu T, Zhang S et al. Dynamic recrystallization behavior of 30CrNi3MoV steel and construction of its model[J]. Heat Treatment of Metals,2021,46(7):23-30.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com