Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Superplastic deformation behavior and constitutive model on Ti60 titanium alloy
Authors: Liao Ziying1  Li Baoyong1  Liu Wei1  Qin Zhonghuan1  Wu Dipeng2  Wu Yong2 
Unit: 1. Beijing Hangxing Machine Manufacturing Co.  Ltd. 2. College of Mechanical and Electrical Engineering  Nanjing University of Aeronautics and Astronautics 
KeyWords: Ti60 titanium alloy  high temperature titanium alloy  superplasticity  constitutive model  Arrhenius equation 
ClassificationCode:TG131
year,vol(issue):pagenumber:2024,49(8):249-254
Abstract:

 To determine the superplastic deformation behavior of Ti60 titanium alloy and promote its engineering application, superplastic tensile tests were conducted on Ti60 titanium alloy at the deformation temperatures of 880-960 and the strain rates of 0.0001-0.01 s-1. The results show that the elongation of Ti60 titanium alloy reaches its maximum value in the condition of 960 and 0.001 s-1, which is 365%. At lower strain rates (0.001 and 0.0001 s-1), the material exhibits significant strain hardening, while at lower deformation temperature(880 ) and higher strain rate (0.01 s-1), the material exhibits stress softening. When the deformation temperature is constant, the peak stress decreases with the decreasing of strain rate. Based on the Arrhenius equation, a constitutive model is constructed, and a method for directly solving the Arrhenius equation without distinguishing the flow stress level is proposed. The strain change is introduced to modify the Arrhenius equation. The correlation coefficient R between the theoretical calculation value of the modified Arrhenius equation and the test value is 0.9914, with an average relative error of 6.62%. The error between the calculated and test results is within an acceptable range, which provides the data support for the use of Ti60 titanium alloy in complex component superplastic forming.

Funds:
国家重点研发计划资助项目(2023YFB3407000);国防基础科研计划(JCKY2021204A004)
AuthorIntro:
作者简介:廖子颖(1998-),男,硕士研究生 E-mail:1821946291@qq.com 通信作者:李保永(1984-),男,博士,正高级工程师 E-mail:libaoyonght239@163.com
Reference:

 [1]朱培亮, 辛社伟, 毛小南, . 高温钛合金的热稳定性研究进展[J]. 钛工业进展, 2023, 40(1): 42-48.


Zhu P L, Xin S W, Mao X N, et al. Research progress on thermal stability of high temperature titanium alloys[J]. Titanium Industry Progress, 2023, 40(1): 42-48.


[2]叶玉刚, 信灿尧. Ti60钛合金热变形行为与应变补偿型本构模型[J]. 精密成形工程, 2024, 16(2): 87-95.


Ye Y G, Xin C Y. Deformation behavior and constitutive model by using strain compensation of Ti60 alloy at elevated temperature[J]. Journal of Netshape Forming Engineering, 2024, 16(2): 87-95.


[3]Li P, Yu R H, Yan S L, et al. Study on deformation behavior of Ti60 alloy based on multi-physics coupling[J]. Materials Today Communications, 2024, 38: 107931.


[4]Wang B N, Zeng W D, Zhao Z B, et al. Effect of micro-texture and orientation incompatibility on the mechanical properties of Ti60 alloy[J]. Materials Science and Engineering: A, 2023, 881: 145419.


[5]夏春林, 叶俊青, 黎汝栋, . Ti60钛合金整体叶盘用锻坯的改进[J]. 锻压技术, 2022, 47(5): 65-72.


Xia C L, Ye J Q, Li R D, et al. Improvement of forging billet for Ti60 titanium alloy blisk [J]. Forging & Stamping Technology, 2022, 47(5): 65-72.


[6]Sai P A, Mihir O, Kolla L R, et al. A review on superplastic forming of Ti-6Al-4V and other titanium alloys[J]. Materials Today Communications, 2023, 34: 105343.


[7]Wang B N, Zeng W D, Zhao Z B, et al. Effect of micro-texture and orientation incompatibility on the mechanical properties of Ti60 alloy[J]. Materials Science and Engineering: A, 2023, 881: 145419.


[8]尹宝琴, 徐帅, 肖纳敏, . Ti60近α钛合金的热变形行为和组织演化[J]. 塑性工程学报, 2022, 29(8): 193-202.


Yin B Q, Xu S, Xiao N M, et al. Thermal deformation behavior and microstructure evolution of near α Ti60 titanium alloy[J]. Journal of Plasticity Engineering, 2022, 29(8): 193-202.


[9]周丽娜, 付明杰, 李晓华, . TA32高温钛合金超塑性能研究[J]. 航空制造技术, 2023, 66(5): 86-90.


Zhou L N, Fu M J, Li X H, et al. Superplastic behavior of TA32 high temperature titanium alloy[J]. Aeronautical Manufacturing Technology, 2023, 66(5): 86-90.


[10]吴迪鹏, 武永, 陈明和, . TC31钛合金板材高温流变行为及组织演变研究[J]. 稀有金属材料与工程, 2019, 48(12): 3901-3909.


Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 titanium alloy sheets[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3901-3909.


[11]Mosleha A O, Mikhaylovskava A V, Kotov A D, et al. Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6Al-4V titanium alloy[J]. Journal of Manufacturing Processes, 2019, 45:262-272.


[12]周凌华, 沈中伟, 许涛. Ti-55钛合金双层板的超塑成形/扩散连接数值模拟及工艺试验[J]. 锻压技术, 2022, 47(8): 76-82.


Zhou L H, Shen Z W, Xu T. Numerical simulation and process test on superplastic forming/diffusion bonding for Ti-55 titanium alloy double-layer plate[J]. Forging & Stamping Technology, 2022, 47(8): 76-82.


[13]吴诗惇. 金属超塑性变形理论[M]. 北京: 国防工业出版社, 1997.


Wu S D. Theories of Superplasticity of Metals[M]. Beijing:National Defense Industry Press, 1997.


[14]李志强. 钛合金超塑成形/扩散连接技术及应用[M]. 北京: 国防工业出版社, 2022.


Li Z Q. Superplastic Forming/Diffusion Bonding Technology of Titanium Alloys: Theories and Applications[M]. Beijing: National Defense Industry Press, 2022.


[15]屈雅倩, 郭鸿镇, 姚泽坤, . Ti60高温钛合金的超塑性拉伸行为及组织演变[J]. 热加工工艺, 2014, 43(14): 50-52,55.


Qu Y Q, Guo H Z, Yao Z K, et al. Superplastic behaviour and microstructure evolution of Ti60 alloy[J]. Hot Working Technology, 2014, 43(14): 50-52,55.


[16]Hajari A, Morakabati M, Abbasi S M, et al. Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy[J]. Materials Science & Engineering A, 2017, 681: 103-113.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com