Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:ECAP process and experiment of TA1 titanium alloy based on fuzzy PID temperature control
Authors: Zhao Jun  Xu Haojie 
Unit: School of Materials Science and Engineering  Xiamen University of Technology 
KeyWords: proportional-integral-derivative algorithm TA1 titanium alloy extrusion temperature  fuzzy control overshooting amount regulation time stablility error 
ClassificationCode:TG316
year,vol(issue):pagenumber:2024,49(10):75-81
Abstract:

 Aiming at the problems of narrow range of deformation temperature and difficulty of deformation at room temperature in the extrusion process of TA1 titanium alloy, the basic principle of heat transfer in the mold was studied by applying the heat conduction theory, and a fuzzy PID algorithm was designed to realize the self-tuning of PID controller parameters in the process of regulating temperature, so as to achieve the precise control of temperature in the extrusion process. The simulation of algorithm response speed and accuracy and the test,comparison and analysis of microstructure were carried out. The results show that after debugging, compared with the traditional PID algorithm, the overshoot amount of the fuzzy PID algorithm is 8.86%, a reduction of 3.97%; the regulation time is 57.56 s, a reduction of 56.88 s; the stability error is 0, a reduction of 0.9%. The experimental study shows that the smaller the mold temperature change, the more obvious the grain refinement of the material after deformation, and the more dense and uniform the tissue distribution.

Funds:
厦门市自然科学基金资助项目(3502Z20227222)
AuthorIntro:
作者简介:赵军(1973-),男,博士,教授,硕士生导师,E-mail:junzhao@xmut.edu.cn
Reference:

 [1]王贤贤, 张睿翔, 张功学,等. 钛合金热变形织构演变研究进展[J]. 塑性工程学报, 2022,29(12): 1-12.


Wang X X, Zhang R X, Zhang G X,et al. Research progress of texture evolution of titanium alloy in hot deformation process [J]. Journal of Plasticity Engineering, 2022,29(12): 1-12.

[2]罗雷. 超细晶工业纯钛室温变形行为研究[D]. 西安:西安建筑科技大学, 2017.

Luo L. Deformation Behavior of Ultra-fine Grained Commercial Pure Titanium at Room Temperature [D]. Xi′an: Xi′an University of Architecture and Technology, 2017.

[3]林正捷, 王立强, 吕维洁, 等. 大塑性变形制备超细晶生物医用钛合金的研究进展[J]. 材料与冶金学报, 2014, 13 (3): 206-211.

Lin Z J, Wang L Q, Lyu W J,et al. Research progress of fabricating ultrafine- grained biomedical titanium alloys by severe plastic deformation (SPD) [J]. Journal of Materials and Metallurgy, 2014, 13(3):206-211.

[4]强萌,杨西荣,刘晓燕,等.ECAP制备超细晶生物医用钛及钛合金的研究进展(英文)[J].稀有金属材料与工程,2023,52(5):1673-1682.

Qiang M, Yang X R, Liu X Y,et al. Research progress in preparation of ultra-fine crystalline biomedical titanium and titanium alloys by ECAP[J]. Rare Metal Materials and Engineering,2023,52(5):1673-1682.

[5]徐淑波, 赵国群, 栾贻国,等. 等通道弯角挤压变形机理分析与工艺路线研究[J]. 中国机械工程, 2006(S1): 110-114.

Xu S B, Zhao G Q, Luan Y G, et al. Deformation behavior analysis and process investigation of equal channel angular pressing [J]. China Mechanical Engineering, 2006(S1): 110-114.

[6]胡雨龙, 刘晓燕, 高飞龙, 等. TA15钛合金室温等径弯曲通道挤压模拟与试验研究[J]. 塑性工程学报,2022,29(6): 33-40.

Hu Y L, Liu X Y, Gao F L, et al. Simulation and test research of equal channel angular pressing of TA15 titanium alloy at room temperature [J]. Journal of Plasticity Engineering, 2022,29(6): 33-40.

[7]Semiatin S L, Delo D P, Segal V M, et al. Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures[J]. Metallurgical and Materials Transactions A, 1999, 30: 1425-1435.

[8]Du F P, Liu F, Jiao Q Y, et al. Influence of ECAP temperature on the mechanical properties of pure Ti [J]. Journal of Mechanical Strength, 2017, 39(3): 692-696.

[9]Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1999, 100(S1):9-34.

[10]Korkut I, Acir A, Boy M. Application of regression and artificial neural network analysis in modelling of tool-chip interface temperature in machining[J]. Expert Systems with Applications, 2011, 38(9): 11651-11656.

[11]夏洪永, 李军国. 基于PLC的锻造加热炉温度智能控制系统设计[J]. 热加工工艺, 2019, 48(9): 180-182,185.

Xia H Y, Li J G. Design of temperature intelligent control system for forging heating furnace based on PLC [J]. Hot Working Technology, 2019,48(9):180-182,185.

[12]Gao Z, Trautzsch T A, Dawson J G. A stable self-tuning fuzzy logic control system for industrial temperature regulation[J]. IEEE Transactions on Industry Applications, 2002, 38(2): 414-424.

[13]Xie X L, Long Z. Fuzzy PID Temperature control system design based on single chip microcomputer[J]. International Journal of Online Engineering, 2015, 11(8): 29-33.

[14]王克平, 赵西城, 杨西荣. 工业纯钛ECAP温变形的力学性能及热稳定性[J]. 热加工工艺, 2011, 40(20): 7-10.

Wang K P, Zhao X C, Yang X R. Mechanical properties and thermal stability of CP-Ti processed by ECAP at intermediate temperature [J]. Hot Working Technology, 2011, 40(20): 7-10.

[15]Huang Y, Figueiredo R B, Baudin T, et al. Evolution of strength and homogeneity in a magnesium AZ31 alloy processed by high-pressure torsion at different temperatures[J]. Advanced Engineering Materials, 2012, 14(11): 1018-1026.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com