Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Multi-objective optimization on ironing of QSn7-0.2 tin bronze based on improved TOPSIS-grey correlation analysis
Authors: Shen Bo1 Guo Wenxiao2 3 
Unit: 1. Department of Mechanical and Electrical Engineering  Shanxi Conservancy Technical Institute 2. China Coal Technology & Engineering Group Taiyuan Research Institute Co.  Ltd. 3.Shanxi Tiandi Coal Mining Machinery Co.  Ltd. 
KeyWords: QSn7-0.2 tin bronze TOPSIS-grey correlation analysis CRITIC method ironing deep drawing force 
ClassificationCode:TG376
year,vol(issue):pagenumber:2024,49(10):129-136
Abstract:

 In order to improve the quality of ironing for QSn7-0.2 tin bronze connecting rod bushing and achieve cost reduction and efficiency improvement, combining the technique for order preference by similarity to an ideal solution (TOPSIS) with grey relation analysis, an improved TOPSIS-grey relation analysis multi-objective evaluation system was proposed. Then, for QSn7-0.2 tin bronze connecting rod bushing, taking thinning rate, die cone angle, deep drawing speed and friction factor as process factor variables, the orthogonal test of four factors and five levels was designed, and the numerical simulation analysis on ironing process was carried out by software ABAQUS. Furthermore, taking yield strength, tensile strength, residual stress and deep drawing force of forming parts as the comprehensive optimization objectives, the weights of multiple optimization objectives were objectively assigned by CRITIC method, and the multi-objective optimization problem was converted into a single objective optimization problem. Finally, the optimal process parameters for QSn7-0.2 tin bronze ironing are obtained as the thinning rate of 42%, the die cone angle of 9°, the deep drawing speed of 16 mm·s-1 and the friction factor of 0.15. Under the optimal combination of process parameters, the yield strength, tensile strength, residual stress and deep drawing force of workpiece are 587 MPa, 643 MPa, 173 MPa and 626 kN, respectively, and the forming quality is better and more balanced.

Funds:
国家重点研发计划(2022YFB4703604);山西省专利转化专项计划项目(202305002);新工科背景下校企融合物联网机电人才培养模式研究项目(DZ24156)
AuthorIntro:
作者简介:申博(1984-),男,硕士,讲师,E-mail:61359199@qq.com
Reference:

[1]南海, 端木樊杰, 李静媛, 等. 变薄拉深对430不锈钢表面起皱的影响[J]. 钢铁, 2019, 54 (1): 56-62.


Nan H, Duanmu F J, Li J Y, et al. Effect of thinning drawing on surface ridging of 430 stainless steel [J]. Iron and Steel, 2019, 54 (1): 56-62.

[2]肖善超. 弹壳多模一次连续变薄拉深工艺研究[D]. 秦皇岛: 燕山大学, 2012.

Xiao S C. Research on Multi-mode-one-off Ironing Process for Cartridge Case[D]. Qinhuangdao:Yanshan University, 2012.

[3]李彦波, 刘荣丰, 刘红武, 等. 基于JSTAMP/NV的AA5042 薄壁筒形件变薄拉深仿真[J]. 计算机辅助工程, 2012, 6(21):68-71. 

Li Y B,Liu R F,Liu H W,et al. Ironing simulation on AA5042 thin wall cylindrical work-piece based on JSTAMP/NV[J]. Computer Aided Engineering,2012, 6(21):68-71.

[4]王俊彪, 贾建军. 多道次变薄拉深的模拟与优化设计[J]. 西北工业大学学报, 1997,3(15): 348-354. 

Wang J B, Jia J J. The simulation and optimization of multistep lroning process [J]. Journal of Northwestern Polytechnical University, 1997, 3(15): 348-354.

[5]吴晟, 张跃.铝合金瓣状盒冲压工艺设计及数值分析[J]. 模具制造, 2016, 16(10):34-38. 

Wu S, Zhang Y. Design of stamping process and numerical analysis for aluminum petal-shape box based on orthogonal experiments [J]. Die & Mould Manufacture, 2016, 16(10):34-38.

[6]Adamovic D, Mandic V, Jurkovic Z, et al. An experimental modelling and numerical FE analysis of steel-strip ironing process[J]. Tehnicki Vjesnik-Technical Gazette, 2010, 17(4), 435-444.

[7]张雄超,陈磊,肖寒,等.半固态触变反挤压锡青铜的组织演变和力学性能[J].稀有金属材料与工程,2022,51(6):2240-2249.

Zhang X C, Chen L, Xiao H, et al. Microstructure evolution and mechanical properties of semi-solid thixotropic reverse extrusion tin bronze [J]. Rare Metal Materials and Engineering, 2022,51(6):2240-2249.

[8]王亚飞. 去应力退火对强力旋压锡青铜筒形件残余应力、组织及性能影响[D].太原:中北大学,2021.

Wang Y F. Effect of Stress Removing Annealing on Residual Stress, Microstructure and Properties of Strongly Rotated Tin Bronze Cylindrical Parts[D]. Taiyuan:North University of China, 2021.

[9]肖寒, 崔鋆昕, 熊迟, 等.退火温度对触变挤压锡青铜轴套组织性能的影响[J].稀有金属材料与工程, 2021,50(11):4119-4127.

Xiao H, Cui Y X, Xiong C, et al. Effect of annealing temperature on microstructure and properties of thixo-extruded tin bronze bushing [J]. Rare Metal Materials and Engineering, 2021,50(11):4119-4127.

[10]杨锋, 樊文欣, 汤传尧, 等.基于Simufact锡青铜连杆衬套错距旋压灰色关联度优化[J].特种铸造及有色合金, 2018,38(1):82-84.

Yang F, Fan W X, Tang C Y, et al. Optimization of the grey correlation degree of connecting rod bush and dip distance spinning based on Simufact software[J]. Special Casting & Nonferrous Alloys, 2018,38(1):82-84.

[11]王兴雷. 某H70弹壳体成形工艺数值模拟及实验研究[D]. 太原: 中北大学, 2023. 

Wang X L. Numerical Simulation and Experimental Research on the Forming Process of a H70 Shell Body[D]. Taiyuan:North University of China, 2023.

[12]Hwang C L, Yoon K S. Multiple Attribute Decision Making[M]. Berlin: Spring-Verlag,1981.

[13]魏子茹,卢延辉,王鹏宇,等.基于CRITIC法的灰色关联理论在无人驾驶车辆测试评价中的应用[J].机械工程学报, 2021,57(12):99-108.

Wei Z R, Lu Y H, Wang P Y, et al. Application of grey correlation theory based on CRITIC method in autonomous vehicles test and evaluation [J]. Journal of Mechanical Engineering, 2021,57(12):99-108.

[14]胡涛,王栋,孙曜,等.基于改进CRITIC-LRA和灰色逼近理想解排序法的空战威胁评估[J].兵工学报,2020,41(12):2561-2569.

Hu T, Wang D, Sun Y, et al. Air combat threat assessment of improved CRITIC-LRA and grey TOPSIS [J]. Acta Armamentarii, 2020,41(12):2561-2569.

[15]信桂新, 杨朝现, 杨庆媛, 等. 用熵权法和改进TOPSIS 模型评价高标准基本农田建设后效应[J]. 农业工程学报, 2017, 33(1): 238-249. 

Xin G X, Yang C X, Yang Q Y, et al. Post-evaluation of well-facilitied capital farmland construction based on entropy weight method and improved TOPSIS model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 238-249.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com