Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot deformation behavior and establishment of constitutive model for H13 die steel
Authors: Guo Chengxiang1 2  Wang Jiachang3  Zhang Minglei3  Zhang Song1 2 
Unit: 1.Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education  School of Mechanical Engineering   Shandong University 2.National Experiment Education Demonstration Center for Mechanical Engineering  Shandong University 3.Qingdao Hisense Mould Co.  Ltd. 
KeyWords: H13 die steel  hot deformation  flow stress  Arrhenius model BP-ANN model 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2024,49(10):221-229
Abstract:

In order to improve the hot working performance and optimize the hot forming process parameters for H13 die steel. the hot deformation behavior of H13 die steel under different strain rates, deformation temperatures and true strain ranges was studied by thermal simulation tester Gleeble-3800, and two kinds of constitutive model such as Arrhenius with strain compensation and BP-ANN were established to describe the flow behavior of H13 die steel. The results show that the flow stress decreases with the decreasing of strain rate and the increasing of deformation temperature. By comparing the prediction ability of two established constitutive models, it is found that the correlation coefficients of Arrhenius model and BP-ANN model are 0.99536  and 0.99952,the average relative errors are 3.58% and 1.23%, and the average absolute errors are 4.45641 and 1.37732, respectively. The BP-ANN model has better accuracy and stability in predicting the high-temperature flow stress of H13 die steel.

Funds:
青岛市科技计划(24-1-2-qljh-10-gx);山东省泰山学者工程专项(ts201712002)
AuthorIntro:
作者简介:呙程祥(1997-),男,硕士研究生,E-mail:202234368@mail.sdu.edu.cn;通信作者:张松(1969-),男,博士,教授,E-mail:zhangsong@sdu.edu.cn
Reference:

[1]贺彤, 王海建, 李花兵, 等.含氮热作模具钢的研究现状与发展[J]. 钢铁研究学报, 2022, 34(12): 1334-1344.


He T, Wang H J, Li H B, et al. Current research status and development of nitrogen-containing hot-work die steel [J].Journal of Iron and Steel Research, 2022, 34(12): 1334-1344.

[2]Lin Y C, Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Computational Materials Science, 2008, 42(3): 470-477.

[3]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4): 1733-1759.

[4]周靖, 王宝雨, 徐伟力, 等.耦合损伤的22MnB5热变形本构模型[J]. 北京科技大学学报, 2013, 35(11): 1450-1457.

Zhou J, Wang B Y, Xu W L, et al. Damage-coupled constitutive model of 22MnB5 steel in hot deformation [J]. Journal of University of Science and Technology Beijing, 2013, 35(11): 1450-1457.

[5]傅垒, 王宝雨, 林建国, 等.耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报, 2013, 35(10): 1333-1339.

Fu L, Wang B Y, Lin J G, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy [J]. Journal of University of Science and Technology Beijing, 2013, 35(10): 1333-1339.

[6]袁康博, 姚小虎, 王瑞丰, 等.金属材料的率-温耦合响应与动态本构关系综述[J]. 爆炸与冲击, 2022, 42(9): 4-37.

Yuan K B, Yao X H, Wang R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation of metallic materials [J].Explosion and Shock Waves, 2022, 42(9): 4-37.

[7]邱宇, 袁飞, 曾元松, 等.4Cr5MoSiV1热作模具钢的热变形行为与热加工图[J]. 机械工程材料, 2021, 45(2): 71-77.

Qiu Y, Yuan F, Zeng Y S, et al. Hot deformation behavior and hot processing map of 4Cr5MoSiV1 hot working die steel [J].Materials for Mechanical Engineering, 2021, 45(2): 71-77.

[8]陈国鑫, 桑宝光, 刘宏伟, 等.H13钢高温热变形特征与动态再结晶行为[J]. 塑性工程学报, 2022, 29(6): 193-202.

Chen G X, Sang B G, Liu H W, et al. Hot deformation characteristics and dynamic recrystallization behavior of H13 steel at high temperature [J].Journal of Plasticity Engineering, 2022, 29(6): 193-202.

[9]毛欢, 韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J]. 铸造技术, 2018, 39(9): 1939-1942,1947.

Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated arrhenius model [J]. Foundry Technology, 2018, 39(9): 1939-1942,1947.

[10]曹建国, 王天聪, 李洪波, 等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报, 2016, 52(4): 90-96,102.

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering, 2016, 52(4): 90-96,102.

[11]丁慧莹, 管延锦, 李玉琦, 等.GGG70L球墨铸铁的高温变形行为及其本构模型建立[J]. 锻压技术, 2022, 47(12): 249-255.

Ding H Y, Guan Y J, Li Y Q, et al. Deformation behavior at high temperature and establishment of constitutive model of GGG70L ductile iron [J].Forging & Stamping Technology, 2022, 47(12): 249-255.

[12]杨合, 詹梅.材料加工过程实验建模方法[M]. 西安: 西北工业大学出版社, 2008.

Yang H, Zhan M. Material Processing Experimental Modeling [M]. Xi′an: Northwestern Polytechnical University Press, 2008.

[13]刘雪峰, 马胜军, 刘锦平, 等.Cu-12%Al合金高温压缩变形过程本构关系的BP神经网络模型[J]. 材料工程, 2009(1): 10-14.

Liu X F, Ma S J, Liu J P, et al. BP neural networks models for constitutive relationship during high temperature deformation process of Cu-12%Al alloy [J]. Journal of Materials Engineering, 2009(1): 10-14.

[14]邓肖峰, 王凯, 石伟.ZL205A铝合金淬火过程本构模型及数值模拟[J]. 材料热处理学报, 2021, 42(8): 125-136.

Deng X F, Wang K, Shi W. Constitutive model and numerical simulation of ZL205A aluminum alloy during quenching [J].Transactions of Materials and Heat Treatment, 2021, 42(8): 125-136.

[15]Pasco J, McCarthy T, Parlee J, et al. Constitutive modeling of modified-H13 steel [J]. MRS Communications, 2022, 12(3): 343-351.

[16]Zamani M R, Mirzadeh H, Malekan M. Artificial neural network applicability in studying hot deformation behaviour of high-entropy alloys [J]. Materials Science and Technology, 2023,39(18):1-9.

[17]Ji G L, Li F G, Li Q H, et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel [J]. Materials Science and Engineering: A, 2011, 528(13-14): 4774-4782.

[18]ASTM E209-18, Standard practice for compression tests of metallic materials at elevated temperatures with conventional or rapid heating rates and strain rates [S].

[19]Sarkar A, Kapoor R, Verma A, et al. Hot deformation behavior of Nb-1Zr-0.1C alloy in the temperature range 700-1700 ℃ [J]. Journal of Nuclear Materials, 2012, 422(1-3): 1-7.

[20]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach[J]. Materials Today Communications,2023,34: 105210.

[21]Lin Y C, Zhang J, Zhong J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel [J]. Computational Materials Science, 2008, 43(4): 752-758.

[22]汪雅婷, 黎俊良, 袁楷峰, 等. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022,50(6):170-177.

Wang Y T, Li J L, Yuan K F, et al. Establishment of hot deformation flow stress prediction model based on GA improved BP neural network [J]. Journal of Materials Engineering, 2022,50(6): 170-177.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com