Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior of homogeneous 7475 aluminum alloy
Authors: Wang Yonghong1 2 Wang Jingtao1 2 Huang Tongjian1 Yang Hang1 Guo Fengjia1 2 3 Zheng Cheng1 2 
Unit: 1. National Engineering Research Center for Plastic Working of Aluminium Alloys  Shandong Nanshan Aluminium Co.  Ltd.  2. Nonferrous Metal Industry Research Institute  Shandong Nanshan Aluminum Co.   Ltd.  3. College of Materials Science and Engineering  Yantai Nanshan University 
KeyWords: homogeneous 7475 aluminum alloy  thermal deformation  rheological stress  constitutive equation thermal processing map 
ClassificationCode:TG146.2+1
year,vol(issue):pagenumber:2024,49(10):248-255
Abstract:

 The high-temperature thermal deformation behavior of homogeneous 7475 aluminum alloy was studied by using thermal simulation testing machine Gleeble-3500 at the deformation temperature of 300-450 ℃ and the strain rate of 0.01-1 s-1. The results show that with the increasing of strain rate and the decreasing of deformation temperature, the rheological stress shows an increasing trend, and the true stress-true strain curve exhibits obvious work hardening and dynamic softening phenomena. Based on this, a constitutive model based on hyperbolic sine equation is established to describe the thermal deformation behavior of alloy at high temperature. In addition, based on the experimental data and the dynamic material model, the thermal processing maps under different strains are established to reveal the influences of strain, deformation temperature and strain rate on the power dissipation rate η and rheological instability ξ. According to the trend of power dissipation rate during the entire thermal deformation process, it is concluded that the homogeneous 7475 aluminum alloy mainly undergoes dynamic recovery and dynamic recrystallization, without superplasticity. The rheological instability zone and safe processing zone are further analyzed, and the optimal thermal processing zone of homogeneous 7475 aluminum alloy is determined to be the deformation temperature of 420-450 ℃ and the strain rate of 0.026-0.185 s-1.

Funds:
AuthorIntro:
作者简介:王永红(1986-),女,硕士,工程师,E-mail:2645138291@qq.com
Reference:

[1]罗兵辉, 柏振海. 高性能铝合金研究进展[J]. 兵器材料科学与工程, 2002, 25(3): 59-63.


Luo B H, Bai Z H. Development of high-performance aluminum alloys[J]. Ordnance Materials Science and Engineering, 2002, 25(3): 59-63. 

[2]杨孝鹤. 7475高强铝合金热处理的研究[D]. 沈阳:东北大学, 2008.

Yang X H. Research on Heat Treatment of 7475 High-strength Aluminum Alloy [D]. Shenyang: Northeastern University, 2008.

[3]Wang S S,Jiang J T,Fan G H,et al.Accelerated precipitation and growth of phases in an Al-Zn-Mg-Cu alloy processed by surface abrasion[J].Acta Materialia, 2017, 131: 233-245.

[4]Chamanfar A,Alamoudi M T,Nanninga N E,et al.Analysis of flow stress and microstructure during hot compression of 6099 aluminum alloy (AA6099)[J]. Materials Science and Engineering: A, 2019, 743: 684-696.

[5]Yan J,Pan Q L,Li B,et al. Research on the hot deformation behavior of Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr alloy using processing map[J]. Journal of Alloys and Compounds, 2015, 632:549-557.

[6]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011,32(4):1733-1759.

[7]Wang S, Luo J R, Hou L G, et al. Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression[J]. Materials & Design, 2016,107:277-289.

[8]Wang W Y, Pan Q L, Sun Y W, et al. Study on hot compressive deformation behaviors and corresponding industrial extrusion of as-homogenized Al-7.82Zn-1.96Mg-2.35Cu-0.11Zr alloy[J]. Journal of Materials Science, 2018,53(16):11728-11748.

[9]Wang H J, Wang C, Mo Y, et al. Hot deformation and processing maps of Al-Zn-Mg-Cu alloy under coupling-stirring casting[J]. Journal of Materials Research and Technology, 2019,8(1):1224-1234.

[10]Tang B B, Wang H T, Jin P P, et al. Constitutive flow behavior and microstructural evolution of 17vol% SiCp/7055Al composite during compression at elevated temperature[J]. Journal of Materials Research and Technology, 2020,9(3):6386-6396.

[11]Lin Y C, Li L T, Xia Y C, et al. Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy[J]. Journal of Alloys & Compounds, 2013,550:438-445.

[12]Wang Y X, Zhao G Q, Xu X, et al. Constitutive modeling, processing map establishment and microstructure analysis of spray deposited Al-Cu-Li alloy 2195[J]. Journal of Alloys & Compounds, 2019,779:735-751.

[13]Yang Q B, Wang X Z, Xu L, et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression[J]. Materials Characterization, 2017, 131: 500-507.

[14]Bo L, Pan Q L, Yin Z M. Characterization of hot deformation behavior of as-homogenized Al-Cu-Li-Sc-Zr alloy using processing maps[J]. Materials Science & Engineering:A, 2014, 614:199-206.

[15]Zhang F, Sun J L, Shen J, et al. Flow behavior and processing maps of 2099 alloy[J]. Materials Science and Engineering: A, 2014,613:141-147.

[16]Liu Y, Geng C, Lin Q Q, et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map[J]. Journal of Alloys & Compounds, 2017,713:212-221.

[17]倪珂, 杨银辉, 曹建春, 等. 18.7Cr-1.0Ni-5.8Mn-0.2N节Ni型双相不锈钢的大变形热压缩软化行为[J].金属学报, 2021, 57(2): 224-236.

Ni K, Yang Y H, Cao J C, et al. Softening behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N low nickel-type duplex stainless steel during hot compression deformation under large strain [J]. Acta Metallurgica Sinica, 2021, 57(2): 224-236.

[18]Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models[J]. Acta Metallurgica, 1984, 32(1): 57-70.

[19]Shi H, Mclarem A I, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Technology, 1997, 13(3): 210-216.

[20]Mcqueen H J, Fry E, Belling J. Comparative constitutive constants for hot working of Al-4.4Mg-0.7Mn(AA5083) [J]. Journal of Materials Engineering and Performance, 2001, 10(2):164-172.

[21]Spigarelli S, Evangelista E, Mcqueen H J. Study of hot workability of a heat treated AA6082 aluminum alloy[J]. Scripta Materialia, 2003, 49(2): 179-183

[22]Zhang H, Li L X, Deng Y, et al. Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression a elevated temperatures[J]. Materials Characterization, 2007, 58(2): 168-173.

[23]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944,15(1):22-32.

[24]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science & Engineering A, 2009, 500(1-2): 114-121.

[25]Sivakesavam O, Prasad Y V R K. Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression: A study with processing map[J].Materials Science & Engineering A,2003, 362(1-2):118-124.

[26]Prasad Y V R K, Gegel H L, Doraivelu S M,et al.Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J].Metallurgical Transactions A, 1984, 15(10):1883-1892.

[27]Chen L, Ma X C, Liu X, et al. Processing map for hot working characteristics of a wrought 2205 duplex stainless steel[J].Materials & Design, 2011, 32(3): 1292-1297.

[28]Murty S V S N, Rao B N. On the flow localization concepts in the processing maps of titanium alloy Ti-24Al-20Nb[J]. Journal of Materials Processing Technology, 2000, 104(1-2):103-109.

[29]Rao K P, Prasad Y V R K, Suresh K. Hot working behavior and processing map of a γ-TiAl alloy synthesized by powder metallurgy[J]. Materials & Design, 2011, 32(10): 4874-4881.

[30]冯菲,曾卫东,朱艳春,等.铸态TC21钛合金高温热变形行为及加工图[J].稀有金属材料与工程, 2012, 41(2):251-255.

Feng F, Zeng W D, Zhu Y C, et al. Hot deformation behavior and processing map of as-cast TC21 alloy [J]. Rare Metal Materials and Engineering, 2012, 41(2):251-255.

[31]Seshacharyulu T, Medeiros S C, Frazier W G, et al. Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: Materials modeling considerations[J]. Materials Science and Engineering:A, 2000, 284(1-2):184-194.

[32]Bembalge O B, Panigrahi S K. Hot deformation behavior and processing map development of cryorolled AA6063 alloyunder compression and tension[J]. International Journal of Mechanical Sciences, 2021, 191: 106100-106110.

[33]Ziegler H. An Introduction to Thermomechanics [M]. Amsterdam: North-Holland Publishing Company,1983.

[34]Zhang J B, Wu C J, Peng Y Y, et al. Hot compression deformation behavior and processing maps of ATI 718 Plus superalloy[J]. Journal of Alloys and Compounds, 2020,835(1-2):1-12.

[35]Luo L, Liu Z Y, Bai S, et al. Hot deformation behavior considering strain effects and recrystallization mechanism of an Al-Zn-Mg-Cu alloy[J]. Materials, 2020, 13(7):1-20.

[36]Zhen L, Hu H, Wang X Y, et al. Distribution characterization of boundary misorientation angle of 7050 aluminum alloy after high-temperature compression[J]. Journal of Materials Processing Technology, 2009, 209(2):754-761.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com