Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:An improved ductile fracture criterion for metal sheet based on DF series
Authors: Wang Lihong1 2 Lyu Lin1 
Unit: 1. Locomotive and Vehicle College  Zhengzhou Railway Vocational & Technical College 2. Henan Engineering Research Center of Rail Transit Intelligent Security  Zhengzhou Railway Vocational & Technical College 
KeyWords: ductile fracture  stress state  uncoupled criterion  void necking coalescence  void growth ductile metal 
ClassificationCode:U287.1
year,vol(issue):pagenumber:2024,49(10):256-264
Abstract:

To accurately describe the fracture behavior of ductile metal under different stress states, an improved ductile fracture criterion based on the DF series was proposed by analyzing the mechanism of nucleation, growth and polymerization of internal micro-voids for materials during plastic deformation, which fully considered the influence of void necking coalescence mechanism on the ductile fracture behavior of material, and the physical meaning of each parameter was clarified. Then, the equivalent fracture strain envelope surfaces of AA 2024-T351 aluminum alloy and AISI 1045 carbon steel were constructed by the proposed ductile fracture criterion, and the predicted fracture strain values under corresponding stress states were compared with the experimental results of previous scholars to verify the effectiveness of the proposed new criterion. Finally, the predicted results are compared with those of the widely used DF2016, Hu and Mu Lei criteria. The results show that compared with the other three kinds of models, the proposed new criterion has the lowest average prediction error and the maximum prediction error, and the prediction accuracy is highest. Thus, the mechanism of void necking coalescence plays an important role in fracture process of ductile metal and should be fully considered. 

Funds:
河南省高等学校重点科研项目(24B580007);郑州铁路职业技术学院科技攻关项目(2024KY008)
AuthorIntro:
作者简介:王丽红(1980-),女,硕士,副教授,E-mail:honly_lee@sina.com
Reference:

[1]Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.


[2]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169.

[3]Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490.

[4]He Z, Zhu H, Hu Y M. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification[J]. International Journal of Mechanical Sciences, 2021, 192: 106081.

[5]董建鹏, 王时龙, 周杰, 等. 基于修正GTN模型的不锈钢管剪切过程韧性断裂准则研究[J]. 工程力学, 2021, 38(3): 239-247.

Dong J P, Wang S L, Zhou J, et al. The ductile fracture criterion of stainless-steel tubes in the shearing process based on modified GTN model[J]. Engineering Mechanics, 2021, 38(3): 239-247.

[6]Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Transactions of the Asme Journal of Engineering Materials and Technology, 1985, 107(1): 83-89.

[7]Andrade F X C, Feucht M, Haufe A, et al. An incremental stress state dependent damage model for ductile failure prediction[J]. International Journal of Fracture, 2016, 200(1): 127-150.

[8]梁宾, 赵岩, 赵清江, 等. 基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J]. 机械工程学报, 2019, 55 (18): 53-62.

Liang B, Zhao Y, Zhao Q J, et al. On the prediction of failure in 6016 aluminum alloy sheet by gissmo damage model[J]. Journal of Mechanical Engineering, 2019, 55 (18): 53-62.

[9]Rice J R, Tracey D M.On the ductile enlargement of voids in triaxial stress fields[J].Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217.

[10]Cockcroft M C, Latham D J. Ductility and the workability of metals[J]. Journal of the Institute of Metals, 1968, 96(1): 33-39.

[11]Wierzbicki T L, Bao Y B, Lee Y W, et al. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Sciences, 2005, 47(4-5): 719-743.

[12]Xue L, Wierzbicki T. Ductile fracture initiation and propagation modeling using damage plasticity theory[J]. Engineering Fracture Mechanics, 2008, 75(11): 3276-3293.

[13]Bai Y L, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20.

[14]李文超, 景媛. 一种改进的Xue-Wierzbicki延性断裂模型[J]. 塑性工程学报, 2022, 29(11): 127-137.

Li W C, Jing Y. A modified Xue-Wierzbicki ductile fracture model[J]. Journal of Plasticity Engineering, 2022, 29(11): 127-137.

[15]Pathak N, Adrien J, Butcher C, et al. Experimental stress state-dependent void nucleation behavior for advanced high strength steels[J]. International Journal of Mechanical Sciences, 2020, 179(1): 105661.

[16]Beremin F M. Cavity formation from inclusions in ductile fracture of A508 steel[J]. Metallurgical Transactions A, 1981, 12(5): 723-731.

[17]Malcher L, Pires F M A, De Sá J M A C. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality[J]. International Journal of Plasticity, 2012, 30: 81-115.

[18]Weck A, Wilkinson D S. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes[J]. Acta Materialia, 2008, 56(8): 1774-1784.

[19]Lou Y S, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrms of sheet metals[J]. International Journal of Solids and Structures, 2012, 49(25): 3605-3615.

[20]Bao Y B, Wierzbicki T. On the cut-off value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72(7): 1049-1069.

[21]Khan A S, Liu H W. A new approach for ductile fracture prediction on Al 2024-T351 alloy[J]. International Journal of Plasticity, 2012, 35: 1-12.

[22]Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality[J]. International Journal of Plasticity, 2014, 54: 56-80.

[23]Lou Y S, Chen L, Clausmeyer T, et al. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals[J]. International Journal of Solids and Structures, 2017, 112: 169-184.

[24]Hu Q, Li X F, Han X H, et al. A new shear and tension based ductile fracture criterion: Modeling and validation[J]. European Journal of Mechanics-A/Solids, 2017, 66: 370-386.

[25]穆磊. 面向先进高强钢的韧性断裂预测模型研究与应用[D]. 北京: 北京科技大学, 2018.

Mu L. Research and Application of Toughness Fracture Prediction Model for Advanced High Strength Steels[D]. Beijing: University of Science and Technology Beijing, 2018.

[26]胡启. 轻质高强板塑性变形的各向异性屈服准则与失效模型的理论研究[D]. 上海: 上海交通大学, 2019.

Hu Q. Theoretical Study of Anisotropic Yield Criterion and Failure Model for Plastic Deformation of Lightweight High-Strength Plate[D]. Shanghai: Shanghai Jiao Tong University, 2019.

[27]鞠珂. 非耦合韧性断裂准则的理论模型研究[D]. 上海: 上海交通大学, 2020.

Ju K. Theoretical Modeling of Uncoupled Ductile Fracture Criterion[D]. Shanghai: Shanghai Jiao Tong University, 2020.

[28]贾哲. 基于孔洞演化行为的铝合金韧性断裂模型研究与应用[D]. 北京: 北京科技大学, 2022.

Jia Z. Research and Application of Aluminum Alloy Toughness Fracture Model Based on Pore Evolution Behavior[D]. Beijing: University of Science and Technology Beijing, 2022.

[29]Chang Z D, Chen J. A new void coalescence mechanism during incremental sheet forming: Ductile fracture modeling and experimental validation[J]. Journal of Materials Processing Technology, 2021, 298: 117319.

[30]Vershinin V V. Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation[J]. International Journal of Solids and Structures, 2015, 67-68: 127-138.

[31]Bai Y L, Teng X Q, Wierzbicki T. On the application of stress triaxiality formula for plane strain fracture testing[J]. Journal of Engineering Materials and Technology, 2009, 131(2): 13-22.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com