Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research progress on friction and lubrication in aluminum alloy forming
Authors: Deng Liang1  Lou Siyuan1  Mao Xuan1  Sun Ruijin2 
Unit: (1.School of Mechanical Engineering Shanghai Institute of Technology Shanghai 201418 China   2.School of Engineering Innovation Shanghai Institute of Technology Shanghai 201418 China) 
KeyWords: friction behavior  wear friction coefficient  lubricant coating 
ClassificationCode:TH117.1
year,vol(issue):pagenumber:2024,49(9):1-11
Abstract:

 Aluminum alloy is widely used in automotive, aerospace, shipbuilding and other industries. The application and forming process of different kinds of aluminum alloy are different. The defects such as springback and cracking may occur in the forming of aluminum alloy at room temperature, and the formability of aluminum alloy can be improved with the increasing of temperature, but the friction and wear will also be aggravated.Based on the different forming processes of aluminum alloy, the wear mechanism and the application of lubricant between workpiece and die contact pair in the forming  of aluminum alloy under different working conditions (mainly temperature and pressure) was introduced. The use of appropriate lubricant could reduce the friction and wear, increase the surface quality and improve the production efficiency of aluminum alloy workpiece. The tribological test methods commonly used in different forming processes of aluminum alloy were reviewed, and the application occasions and existing problems of standard and non-standard experiments were summarized, which laid the foundation and enlighten the research on friction behavior and lubricants in the forming of aluminum alloy.

Funds:
基金项目:国家自然科学基金资助项目(52005339);清华大学高端装备界面科学与技术全国重点试验室开放基金资助项目(SKLTKF22B16);上海应用技术大学协同创新基金(No.XTCX2024-02)
AuthorIntro:
作者简介:邓 亮(1986-),男,博士,讲师 E-mail:liangdeng@sit.edu.cn 通信作者:孙瑞金(1993-),女,学士,助理实验师 E-mail:sunruijin@sit.edu.cn
Reference:
[1]  Hosseini-Tehrani P, Nikahd M. Two materials S-frame representation for improving crashworthiness and lightening\[J]. Thin-Walled Structures, 2006, 44(4): 407-414.

 

\[2]  Kim H J, McMillan C, Keoleian G A, et al. Greenhouse gas emissions payback for lightweighted vehicles using aluminum and high-strength steel\[J]. Journal of Industrial Ecology, 2010, 14(6): 929-946.

 

\[3]  Hornbogen E. Hundred years of precipitation hardening\[J]. Journal of Light Metals, 2001, 1(2): 127-132.

 

\[4]  Liu Y, Zhu Z J, Wang Z J, et al. Flow and friction behaviors of 6061 aluminum alloy at elevated temperatures and hot stamping of a B-pillar\[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 4063-4083.

 

\[5]  Teller M, Ross I, Temmler A, et al. Investigation of friction conditions in dry metal forming of aluminum by extended conical tube-upsetting tests\[J]. Key Engineering Materials, 2018, 767: 189-195.

 

\[6]  Merklein M, Johannes M, Lechner M, et al. A review on tailored blanks-Production, applications and evaluation\[J]. Journal of Materials Processing Technology, 2014, 214(2): 151-164.

 

\[7]  Yue Z M, Chu X R, Gao J. Influence of ductile damage on springback prediction of aluminum alloy sheet under changing loading paths\[J]. Procedia Manufacturing, 2018, 15: 716-721.

 

\[8]  Deng L, Wang X Y, Jin J S, et al. Springback and hardness of aluminum alloy sheet part manufactured by warm forming process using non-isothermal dies\[J]. Procedia Engineering, 2017, 207: 2388-2393.

 

\[9]  Yanagimoto J, Oyamada K, Nakagawa T. Springback of high-strength steel after hot and warm sheet formings\[J]. CIRP Annals, 2005, 54(1): 213-216.

 

\[10]修天洵, 王伟, 张毅,等. 800 ℃高温下SKD61/B1500HS摩擦界面的BN粉末润滑特性研究\[J].中国科技论文,2018, 13(16): 1822-1828.

 

Xiu T X, Wang W, Zhang Y, et al. Investigation on lubrication properties of BN powder for B1500HS-tool steel SKD61 tribo-pair under 800 ℃ high temperature\[J]. China Sciencepaper, 2018, 13(16): 1822-1828.

 

\[11]Wang W R, Zhao Y Z, Wang Z M, et al. A study on variable friction model in sheet metal forming with advanced high strength steels\[J]. Tribology International, 2016, 93: 17-28.

 

\[12]Lenard J G. The effect of roll roughness on the rolling parameters during cold rolling of an aluminum alloy\[J]. Journal of Materials Processing Technology, 2004, 152(2): 144-153.

 

\[13]Flitta I, Sheppard T. Nature of friction in extrusion process and its effect on material flow\[J]. Materials Science and Technology, 2003, 19(7): 837-846.

 

\[14]Hu C L, Ding T R, Ou H G, et al. Effect of tooling surface on friction conditions in cold forging of an aluminum alloy\[J]. Tribology International, 2019, 131: 353-362.

 

\[15]章小峰, 张祥林, 王爱华, 等. 铝合金板成形中摩擦与润滑的研究进展\[J]. 金属热处理, 2007, 32(12): 11-17.

 

Zhang X F, Zhang X L, Wang A H, et al. Research and development of friction and lubrication for aluminum alloy sheet forming\[J]. Heat Treatment of Metals, 2007, 32(12): 11-17.

 

\[16]Schedin E. Galling mechanisms in sheet forming operations\[J]. Wear, 1994, 179(1-2): 123-128.

 

\[17]Flegler F, Neuhuser S, Groche P. Influence of sheet metal texture on the adhesive wear and friction behavior of EN AW-5083 aluminum under dry and starved lubrication\[J]. Tribology International, 2020, 141: 105956.

 

\[18]Mori K, Abe Y, Miyazawa S. Warm stamping of ultra-high strength steel sheets at comparatively low temperatures using rapid resistance heating\[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 3885-3891.

 

\[19]Karupannasamy D K, Hol J, de Rooij M B, et al. A friction model for loading and reloading effects in deep drawing processes\[J]. Wear, 2014, 318(1-2): 27-39.

 

\[20]Karbasian H, Tekkaya A E. A review on hot stamping\[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103-2118.

 

\[21]Pereira M P, Yan W, Rolfe B F. Sliding distance, contact pressure and wear in sheet metal stamping\[J]. Wear, 2010, 268(11-12): 1275-1284.

 

\[22]Wang Z, Dohda K, Haruyama Y. Effects of entraining velocity of lubricant and sliding velocity on friction behavior in stainless steel sheet rolling\[J]. Wear, 2006, 260(3): 249-257.

 

\[23]Liu X C, Ji K, El Fakir O, et al. Determination of the interfacial heat transfer coefficient for a hot aluminum stamping process\[J]. Journal of Materials Processing Technology, 2017, 247: 158-170.

 

\[24]Fan X B, He Z B, Zhou W X, et al. Formability and strengthening mechanism of solution treated Al-Mg-Si alloy sheet under hot stamping conditions\[J]. Journal of Materials Processing Technology, 2016, 228: 179-185.

 

\[25]Gali O A, Riahi A R, Alpas A T. The tribological behavior of AA5083 alloy plastically deformed at warm forming temperatures\[J]. Wear, 2013, 302(1-2): 1257-1267.

 

\[26]Wang L L, He Y, Zhou J, et al. Effect of temperature on the frictional behavior of an aluminum alloy sliding against steel during ball-on-disc tests\[J]. Tribology International, 2010, 43(1-2): 299-306.

 

\[27]Liu Y, Zhu B, Wang K, et al. Friction behaviors of 6061 aluminum alloy sheets in hot stamping under dry and lubricated conditions based on hot strip drawing test\[J]. Tribology International, 2020, 151: 106504.

 

\[28]Rigas N, Merklein M. Characterization of the tribological behavior of different tool coatings and dry lubricant for high-strength aluminum alloys at elevated temperatures\[J]. Advanced Engineering Materials, 2023, 25(15): 2201650.

 

\[29]Jain M, Allin J, Bull M J. Deep drawing characteristics of automotive aluminum alloys\[J]. Materials Science and Engineering: A, 1998, 256(1-2): 69-82.

 

\[30]吴佳松,蒋怡涵,王武荣,等. 7075铝合金板材热冲压成形中的高温摩擦\[J]. 工程科学学报, 2020, 42(12): 1631-1638.

 

 

Wu J S, Jiang Y H, Wang W R, et al. High-temperature friction of 7075 aluminum alloy sheet during hot stamping\[J]. Chinese Journal on Engineering, 2020, 42(12): 1631-1638.

 

\[31]Olsson D D, Bay N, Andreasen J L. Prediction of limits of lubrication in strip reduction testing\[J]. CIRP Annals, 2004, 53(1): 231-234.

 

\[32]Yang X, Liu X C, Liu H L, et al. Experimental and modelling study of friction evolution and lubricant breakdown behavior under varying contact conditions in warm aluminum forming processes\[J]. Tribology International, 2021, 158: 106934.

 

\[33]Xia J S, Zhao J, Dou S S. Friction characteristics analysis of symmetric aluminum alloy parts in warm forming process\[J]. Symmetry, 2022, 14(1): 166.

 

\[34]Hanna M D. Tribological evaluation of aluminum and magnesium sheet forming at high temperatures\[J]. Wear, 2009, 267(5-8): 1046-1050.

 

\[35]Zhou J, Yang X M, Wang B Y, et al. Springback prediction of 7075 aluminum alloy V-shaped parts in cold and hot stamping\[J]. The International Journal of Advanced Manufacturing Technology, 2022,119: 203-216.

 

\[36]Esmaeilpour R, Tiji S A N, Kim H, et al. Stamping of a cross-shaped part with 5052, 5754 and 6016 aluminum alloy sheets-experimental and finite element analysis comparison\[A].IOP Conference Series: Materials Science and Engineering\[C]. San Francisco, CA: IOP Publishing, 2019.

 

\[37]Jin J S, Wang X Y, Deng L, et al. A single-step hot stamping-forging process for aluminum alloy shell parts with nonuniform thickness\[J]. Journal of Materials Processing Technology, 2016, 228: 170-178.

 

\[38]Wu X H, Zhao G Q, Luan Y G, et al. Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process\[J]. Materials Science and Engineering: A, 2006, 435: 266-274.

 

\[39]Duan X J, Sheppard T. Simulation and control of microstructure evolution during hot extrusion of hard aluminum alloys\[J]. Materials Science and Engineering: A, 2003, 351(1-2): 282-292.

 

\[40]Yu Z H, Wang Y S, Xiu W, et al. Numerical and Experimental Study on cold rolling process of 5B02 aluminum alloy tubes\[A].Journal of Physics: Conference Series\[C].Nannig:  IOP Publishing, 2024.

 

\[41]Gong H, Cao X, Liu Y Q, et al. Simulation and experimental study on the inhomogeneity of mechanical properties of aluminum alloy 7050 plate\[J]. Metals, 2020, 10(4): 515-524.

 

\[42]Kim Y H, Ryou T K, Choi H J, et al. An analysis of the forging processes for 6061 aluminum-alloy wheels\[J]. Journal of Materials Processing Technology, 2002, 123(2): 270-276.

 

\[43]Scholz P, Brner R, Kühn R, et al. Dry forming of aluminum sheet metal: Influence of different types of forming tool microstructures on the coefficient of friction\[J]. Key Engineering Materials, 2015, 651: 516-521.

 

\[44]Rusin N M, Skorentsev A L, Kolubaev E A. Dry friction of pure aluminum against steel\[J]. Journal of Friction and Wear, 2016, 37: 86-93.

 

\[45]Steiner J, Merklein M. Investigation of influencing parameters for tribological conditions in dry forming processes\[J]. Acta Metallurgica Sinica (English Letters), 2015, 28: 1435-1441.

 

\[46]Dou S S, Xia J S. Analysis of sheet metal forming (Stamping process): A study of the variable friction coefficient on 5052 aluminum alloy\[J]. Metals, 2019, 9(8): 853-8868.

 

\[47]Sabet A S, Domitner J, ksüz K I, et al. Tribological investigations on aluminum alloys at different contact conditions for simulation of deep drawing processes\[J]. Journal of Manufacturing Processes, 2021, 68: 546-557.

 

\[48]Bay N, Azushima A, Groche P, et al. Environmentally benign tribo-systems for metal forming\[J]. CIRP Annals, 2010, 59(2): 760-780.

 

\[49]Yahaya A, Samion S, Musa M N, et al. Determination of friction coefficient in the lubricated ring upsetting with palm kernel oil for cold forging of aluminum alloys\[J]. Jurnal Tribologi, 2020, 25: 16-28.

 

\[50]Van Beek A. Advanced Engineering Design\[M]. Delft: Delft University of Technology, 2006.

 

\[51]Wang C G, Ma R, Zhao J, et al. Calculation method and experimental study of coulomb friction coefficient in sheet metal forming\[J]. Journal of Manufacturing Processes, 2017, 27: 126-137.

 

\[52]Kim Y S, Jain M K, Metzger D R. Determination of pressure-dependent friction coefficient from draw-bend test and its application to cup drawing\[J]. International Journal of Machine Tools and Manufacture, 2012, 56: 69-78.

 

\[53]Trzepiecinski T, Lemu H G. Recent developments and trends in the friction testing for conventional sheet metal forming and incremental sheet forming\[J]. Metals, 2019, 10(1): 47-80.

 

\[54]邓亮,徐冰倩.一种模拟热成形工况的高温摩擦试验机的设计及探讨\[J].润滑与密封, 2023, 48(6): 180-186.

 

Deng L, Xu B Q. Design and discussion of a new high-temperature tribological test machine simulating hot stamping conditions\[J]. Lubrication Engineering, 2023, 48(6): 180-186.

 

\[55]Liu X J, Liewald M, Becker D. Effects of rolling direction and lubricant on friction in sheet metal forming\[J]. Journal of Tribology,2009, 131(4):042101.

 

\[56]de Argandoa E S, Zabala A, Galdos L, et al. The effect of material surface roughness in aluminum forming\[J]. Procedia Manufacturing, 2020, 47: 591-595.

 

\[57]Pop M F, Neag A V, Sas-Boca I M. Experimental and numerical study on the influence of lubrication conditions on AA6068 aluminum alloy cold deformation behavior\[J]. Materials, 2023, 16(5): 2045.

 

\[58]Lee S W, Lee J M, Joun M S. On critical surface strain during hot forging of lubricated aluminum alloy\[J]. Tribology International, 2020, 141: 105855.

 

\[59]Gao Y R, Li H X, Zhao D Y, et al. Advances in friction of aluminum alloy deep drawing\[J]. Friction, 2024, 12(3): 396-427.

 

\[60]Tenner J, Andreas K, Radius A, et al. Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces\[J]. Procedia Engineering, 2017, 207: 2245-2250.

 

\[61]Zhou R, Cao J, Wang Q J, et al. Effect of EDT surface texturing on tribological behavior of aluminum sheet\[J]. Journal of Materials Processing Technology, 2011, 211(10): 1643-1649.

 

\[62]Funazuka T, Dohda K, Takatsuji N, et al. Effect of die coating on surface crack depth of hot extruded 7075 aluminum alloy\[J]. Friction, 2023, 11(7): 1212-1224.

 

\[63]Hu C L, Yin Q, Zhao Z. A novel method for determining friction in cold forging of complex parts using a steady combined forward and backward extrusion test\[J]. Journal of Materials Processing Technology, 2017, 249: 57-66.

 

\[64]Kalin M, Jerina J. The effect of temperature and sliding distance on coated (CrN, TiAlN) and uncoated nitrided hot-work tool steels against an aluminum alloy\[J]. Wear, 2015, 330: 371-379.

 

\[65]Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test\[J]. CIRP Annals, 2009, 58(1): 247-250.

 

\[66]Li L X, Peng D S, Liu J A, et al. An experimental study of the lubrication behavior of A5 glass lubricant by means of the ring compression test\[J]. Journal of Materials Processing Technology, 2000, 102(1-3): 138-142.

 

\[67]Podgornik B, Kosec T, Kocijan A, et al. Tribological behavior and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminum forming\[J]. Tribology International, 2015, 81: 267-275.

 

\[68]王佳贝,孔尚,胡文敬,等.石墨烯作为添加剂在两种成品润滑油中的应用可行性研究\[J]. 摩擦学学报,2022,42(4): 775-784.

 

Wang J B, Kong S, Hu W J, et al. Application feasibility of graphene as additive in two kinds of lubricating oil\[J]. Tribology,2022,42(4):775-784.

 

\[69]何熙,董瑞,马琳,等.二硫代二苯甲酸二异辛酯作为铜、铝合金润滑剂的摩擦学性能及机理研究\[J]. 摩擦学学报, 2023, 43(2):167-177.

 

He X, Dong R, Ma L, et al. Tribological properties and mechanism of diisooctyl dithiodibenzoate as a lubricant for copper and aluminum alloy\[J]. Tribology, 2023, 43(2): 167-177.

 

\[70]Hironaka S, Sakurai T. The effect of pentaerythritol partial ester on the wear of aluminum\[J]. Wear, 1978, 50(1): 105-114.

 

\[71]姚娜,李梅,李守海,等.油酸基极压水性润滑添加剂的合成及性能研究\[J].润滑与密封,2022,47(7):90-96.

 

Yao N, Li M, Li S H, et al. Study on synthesis and performance of oleic acid-based extreme pressure water-based lubricant additive\[J]. Lubrication Engineering, 2022, 47(7): 90-96.

 

\[72]Chen L, Tu N, Wei Q Y, et al. Inhibition of cold-welding and adhesive wear occurring on surface of the 6061 aluminum alloy by graphene oxide/polyethylene glycol composite water-based lubricant\[J]. Surface and Interface Analysis, 2022, 54(3): 218-230.

 

\[73]Kreivaitis R, Gumbyte· M, Treinyte· J. Investigation of tribological properties of environmentally friendly ionic liquids as a potential lubricity improving additives for water-based lubricants\[J]. Industrial Lubrication and Tribology, 2022, 74(3): 294-301.

 

\[74]Schell L, Sellner E, Massold M, et al. Tribology in warm and hot aluminum sheet forming: Transferability of strip drawing tests to forming trials\[J]. Advanced Engineering Materials, 2023,25 (15):2201900.

 

\[75]Hu Y, Wang L, Politis D J, et al. Development of an interactive friction model for the prediction of lubricant breakdown behavior during sliding wear\[J]. Tribology International, 2017, 110: 370-377.

 

\[76]丁娅, 陈炳耀, 杨善杰. 润滑油添加剂发展综述\[J].山东工业技术,2019(4):10,7.

 

Ding Y, Chen B Y, Yang S J. Overview of lubricant additive development\[J]. Journal of Shandong Industrial Technology, 2019(4): 10, 7.

 

\[77]Yu B J, Qian L M. Friction-induced nanofabrication: A review\[J]. Chinese Journal of Mechanical Engineering, 2021, 34: 1-26.

 

\[78]郑哲, 方建华, 王建华,等. 新型水溶性润滑添加剂的研究进展\[J]. 摩擦学学报, 2017, 37(3): 409-420.

 

Zheng Z, Fang J H, Wang J H, et al. The research progress of novel water-soluble lubricant additives\[J]. Tribology, 2017, 37(3): 409-420.

 

\[79]Yanagida A, Kurihara T, Azushima A. Development of tribo-simulator for hot stamping\[J]. Journal of Materials Processing Technology, 2010, 210(3): 456-460.

 

\[80]Decrozant-Triquenaux J, Pelcastre L, Courbon C, et al. High temperature tribological behaviour of PVD coated tool steel and aluminium under dry and lubricated conditions\[J]. Friction, 2021, 9: 802-821.

 

\[81]郑友华,李冀生,王平,等.二硫化钼基润滑涂层在润滑油中的作用机理及实际应用\[J].润滑与密封,2005(2):127-129,132.

 

Zheng Y H, Li J S, Wang P, et al. Mechanisms of the molybdenum disulfide solid lubricant film in lubrication and its applications\[J]. Lubricants Engineering, 2005(2): 127-129, 132.

 

\[82]Ngaile G, Botz F. Performance of graphite and boron-nitride-silicone based lubricants and associated lubrication mechanisms in warm forging of aluminum\[J]. Journal of Tribology, 2008, 130(2): 021801.

 

\[83]余均武,彭大暑,林启权,等.不锈钢拉深润滑剂的研制与应用\[J].湘潭大学自然科学学报,2004,26(3):116-119.

 

Yu J W, Peng D S, Lin Q Q, et al. Development of deep drawing lubrication oil for 304 stainless steel\[J]. Natural Science Journal of Xiangtan University, 2004, 26(3): 116-119.

 

\[84]Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS2 nanoparticles under mixed lubrication\[J]. Wear, 2003, 255(7-12): 785-793.

 

\[85]Ghiotti A, Simonetto E, Bruschi S. Influence of process parameters on tribological behavior of AA7075 in hot stamping\[J]. Wear, 2019, 426: 348-356.

 

\[86]Shatalov R L, Pham V K, Tran V Q. Investigation of the effect of various production lubricants on aluminum alloy strip rolling characteristics\[J]. Metallurgist, 2022, 66(1-2): 139-145.

 

\[87]Shatalov R L, Pham V H, Tran V Q. Influence of lubricants and contact pressure models on the rolling power along thin aluminum stripes\[J]. Metallurgist, 2021, 65: 660-672.

 

\[88]Dohda K, Wang Z. Effects of average lubricant velocity and sliding velocity on friction behavior in mild steel sheet forming\[J]. 1998, 120(4): 724-728.

 

\[89]Dohda K, Wang Z. Effects of lubricant velocity and sliding velocity on friction behavior in aluminum sheet rolling\[A].Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition\[C]. San Francisco, CA: ASME, 1995.

 

\[90]Prieske M, Hasselbruch H, Mehner A, et al. Friction and wear performance of different carbon coatings for use in dry aluminum forming processes\[J]. Surface and Coatings Technology, 2019, 357: 1048-1059.

 

\[91]Müller M, Hild R, Trauth D, et al. Investigation of different tribological systems during full forward impact extrusion of aluminum alloy EN AW 6082\[J]. Industrial Lubrication and Tribology, 2019, 72(6): 709-712.

 

\[92]吴立波,薛勇,张治民,等.铝合金筒体侧向挤压润滑条件分析及润滑剂配比研究\[J].轻合金加工技术, 2013, 41(8): 41-44.

 

Wu L B, Xue Y, Zhang Z M, et al. Lubricating condition analysis of cylinder lateral extrusion and study on lubricant burden\[J]. Light Alloy Fabrication Technology, 2013,41(8): 41-44.

 

\[93]李长虹.石墨对三氧化二铝/铜金属陶瓷复合材料摩擦磨损性能的影响\[J].摩擦学学报, 2004(6): 572-575.

 

Li C H. Study of graphite action in Al2O3-Cu matrix\[J]. Tribology, 2004(6): 572-575.

 

\[94]肖华,李保成,张星.铝合金温挤压用润滑剂试验研究\[J].热加工工艺,2011,40(5):110-111, 114.

 

Xiao H, Li B C, Zhang X. Experiment study of lubricant for warm extrusion of aluminum alloy\[J]. Hot Working Technology, 2011, 40(5): 110-111, 114.

 

\[95]Jerina J, Kalin M. Aluminum-alloy transfer to a CrN coating and a hot-work tool steel at room and elevated temperatures\[J]. Wear, 2015, 340: 82-89.

 

\[96]Jerina J, Kalin M. Initiation and evolution of the aluminum-alloy transfer on hot-work tool steel at temperatures from 20 ℃ to 500 ℃\[J]. Wear, 2014, 319(1-2): 234-244.

 

\[97]Birol Y. Sliding wear of CrN, AlCrN and AlTiN coated AISI H13 hot work tool steels in aluminum extrusion\[J]. Tribology International, 2013, 57: 101-106.

 

\[98]Yahaya A, Samion S. Friction condition of aluminum alloy AA6061 lubricated with bio-lubricant in cold forging test\[J]. Industrial Lubrication and Tribology, 2022, 74(4): 378-384.

 

\[99]Buchner B, Maderthoner G, Buchmayr B. Characterisation of different lubricants concerning the friction coefficient in forging of AA2618\[J]. Journal of Materials Processing Technology, 2008, 198(1-3): 41-47.

 

\[100]Alimirzaloo V, SheydayiGurchinQaleh S, MashhadiKeshtiban P, et al. Investigation of the effect of CuO and Al2O3 nanolubricants on the surface roughness in the forging process of aluminum alloy\[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(12): 1595-1604.

 

\[101]Fann K J, Chen C C. Grain size in aluminum alloy 6061 under hot ring compression test and after T6 temper\[J]. Applied Sciences, 2017, 7(4): 372-384. 

 

\[102]Sabet A S, Domitner J, Ristic′ A, et al. Effects of temperature on friction and degradation of dry film lubricants during sliding against aluminum alloy sheets\[J]. Tribology International, 2023, 180: 108205.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com