Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature deformation properties and microstructure variation law of 5A90 Al-Li alloy used in aviation field
Authors: Feng Zhenwei1  Jiang Shaosong2  Kang Liangwei2 
Unit: (1.The Second Military Representative Office of the Air Force Equipment Department in Harbin  Harbin 150001 China    2.National Key Laboratory for Precision Hot Processing of Metals  Harbin Institute of Technology  Harbin 150001 China) 
KeyWords: 5A90 Al-Li alloys  high temperature tensile  microstructure  thermal deformation behavior  fracture analysis 
ClassificationCode:TG132.3
year,vol(issue):pagenumber:2024,49(9):186-194
Abstract:

 High temperature tensile experiments were conducted on 5A90 Al-Li alloy thin sheet with the thickness of 1.30 mm at the deformation temperatures of 340, 370, 400, 430, 460 and 490 ℃ and the strain rates of 0.0001, 0.0005 and 0.001 s-1, and the deformation behavior was studied by stress-strain curve. Then, the microstructure and fracture morphology of samples after stretching were observed to study the influence of deformation parameters on the microstructure of material. The results show that the peak stress decreases with the increasing of deformation temperature, and decreases with the decreasing of strain rate. When the strain rate is 0.0005 s-1 and the temperature is 340 ℃, the maximum elongation of 5A90 Al-Li alloy reaches 68%, and the elongation is inversely proportional to the temperature at the low strain rate. At the strain rate of 0.001 s-1, there is a peak value due to the sliding of high temperature deformation grain boundary. When the temperature increases, the grains of microstructure are significantly elongated along the uniaxial stretching direction with the increasing of temperature. In addition, with the decreasing of strain rate, the grain grows up significantly, transforming from the incomplete equiaxed grains to the complete equiaxed grains.

 
Funds:
AuthorIntro:
作者简介:冯贞伟(1978-),男,硕士,工程师 E-mail:79827337@qq.com 通信作者:蒋少松(1978-),男,博士,研究员 E-mail:15513547207@163.com
Reference:

 


 

\[1]  Sun W, Zhu Y, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity \[J]. Science, 2019, 363(6430): 972-975.

 

\[2]  Wang S B, Ran Q, Yao R Q, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries \[J]. Nature Communications, 2020, 11(1):1634.

 

\[3]  Sokluk M, Cao C, Pan S, et al. Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075 \[J]. Nat Commun, 2019, 10(1): 98.

 

\[4]  Cai Y H, Liang R G, Su Z P, et al. Microstructure of spray formed Al-Zn-Mg-Cu alloy with Mn addition \[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 9-14.

 

\[5]  Yang M J, Chen H N, et al. Quantified contribution of  β″ and β′ precipitates to the strengthening of an aged Al-Mg-Si alloy \[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2020, 774:138776.

 

\[6]  Chen S, Zhan X H, Zhao Y Q, et al. Influence of laser power on grain size and tensile strength of 5A90 Al-Li alloy T-joint fabricated by dual laser-beam bilateral synchronous welding \[J]. Metals and Materials International, 2021, 27(6): 1671-85.

 

\[7]  Verbernr B A, Plumper O, Matthijs de winter D A, et al. Superplastic nanofibrous slip zones control seismogenic fault friction \[J]. Science, 2014, 346(6215): 1342.

 

\[8]  Zhang L, Zhang J H, Xu C, et al. Investigation of high-strength and superplastic Mg-Y-Gd-Zn alloy \[J]. Materials & Design, 2014, 61: 168-176.

 

\[9]  付明杰, 曾元松, 韩秀全, 等. Ti-4.5Al-3V-2Fe-2Mo合金板材超塑成形组织及性能研究 \[J].航空制造技术,2021,64(Z1):76-81.

 

Fu M J, Zeng Y S, Han X Q, et al. Microstructure and mechanical property of superplastic deformed Ti-4.5Al-3V-2Fe-2Mo alloy sheet\[J]. Aeronautical Manufacturing Technology, 2021, 64(Z1): 76-81.

 

\[10]Lakshmanan P, Sakthivel E. Examining the superplastic behavior of (Al-Si-Mg)/SiC metal matrix nanocomposites \[J]. Materials Today-Proceedings, 2022, 62: 962-966.

 

\[11]Li L T, Lin Y C, Zhou H M, et al. Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model \[J]. Computational Materials Science, 2013, 73: 72-78.

 

\[12]Das P, Jayaganthan R, Singh I V. Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy \[J]. Materials & Design, 2011, 32(3): 1298-1305.

 

\[13]Zhang P, Ye L Y, Zhang X M, et al. Grain structure and microtexture evolution during superplastic deformation of 5A90 Al-Li alloy \[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2088-2093.

 

\[14]Wang G W, Ye L Y, Sun D X, et al. Superplastic deformation behavior of 5A90 aluminum-lithium alloy \[J]. Journal of Central South University(Science and Technology), 2017,48(5):21-28.

 

\[15]程东海, 陈龙, 陈益平, 等. 5A90铝锂合金电子束焊接头超塑性变形组织演变\[J]. 焊接学报, 2017, 38(6): 29-32,36,120.

 

Cheng D H, Chen L, Chen Y P, et al. Evolution of superplastic deformation microstructure in electron beam welded joints of 5A90 aluminum lithium alloy\[J].Transactions of the China Welding Institution, 2017, 38(6): 29-32,36,120.

 

\[16]牛凤姣,马子博,郭亚杰,等.固溶温度对薄板细晶2A97铝锂合金强化机制的影响研究\[J].湖南大学学报(自然科学版),2023,50(6):144-155.

 

Niu F J, Ma Z B, Guo Y J, et al. Study on influence of solution temperature on strengthening mechanism of thin-plated fine-grained 2A97 Al-Li alloy \[J]. Journal of Hunan University(Natural Sciences),2023,50(6):144-155.

 

\[17]Xiao J, Cao J G, Song C N, et al. The collapse deformation prediction model of wide 7075 aluminum alloy intermediate slab based on PSO-SVR during hot rolling process\[J]. Journal of Materials Engineering and Performance,2023,33:1034-1050.

 

\[18]张义俊,冯亚磊,郭晓光,等.2195铝锂合金的热变形行为及本构方程研究\[J].锻压技术,2023,48(9):239-247.

 

Zhang Y J, Feng Y L, Guo X G, et al. Study on thermal deformation behavior and constitutive equation of 2195 Al-Li alloy \[J]. Forging & Stamping Technology,2023,48(9):239-247.

 

\[19]楼国彪,杨未,陈武龙,等.S32001双相型不锈钢高温力学性能试验\[J].同济大学学报(自然科学版),2022,50(6):831-840.

 

Lou G B, Yang W, Cen W L, et al. Experimental investigation on mechanical properties of S32001 duplex \[J].Journal of Tongji University(Natural Science), 2022,50(6):831-840. 

 

\[20]吴道祥,梁强,王敬.2024A铝合金高温流变行为及本构关系研究\[J].特种铸造及有色合金,2020,40(3):233-238.

 

Wu D X, Liang Q, Wang J, et al. Hot deformation behavior and constitutive equation of 2024A aluminum alloy\[J]. Special Casting & Nonferrous Alloys,2020,40(3):233-238.

 

\[21]曹建国,王天聪,李洪波,等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系\[J].机械工程学报,2016,52(4):90-96,102.

 

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified arrhenius model \[J]. Journal of Mechanical Engineering,2016,52(4):90-96,102.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com