Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Dynamic recrystallization model and numerical simulation of 18CrNiMo7-6 gear steel
Authors: Xie Yikui1 2 Wang Zhongying1 2 Fu Jianxun2 Liu Hui3 
Unit: (1. School of Materials Science and Engineering  Shanghai University  Shanghai 200444  China 2.East China Branch of CISRI    Huai′an 223007  China  3.School of Materials and Chemical Engineering  Anhui Jianzhu University  Hefei 230601  China) 
KeyWords: 18CrNiMo7-6 steel  dynamic recrystallization  grain size evolution  single-pass compression test Deform-3D 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2024,49(9):195-201
Abstract:

 The single-pass compression tests on 18CrNiMo7-6 gear steel were conducted by Gleeble-3500 thermal simulation machine to explore the dynamic recrystallization behavior and the evolution law of grain size of steel under different deformation temperatures and strain rates. Then, the dynamic recrystallization and grain size models were established and simulated by finite element software Deform-3D, and the complete recrystallization characteristics in the central region of the sample and its changing expansion trend with the temperature were revealed. The simulation results show that the central region of the specimen undergoes complete recrystallization and expands with the increasing of deformation temperature. Under low strain rate condition, the incomplete recrystallization area increases due to the lack of distortion energy and dislocation accumulation. The grain size decreases with the decreasing of deformation temperature, but it may lead to mixed crystal. At the same time, the grain sizes in the center and expansion regions are generally larger under low strain rate condition. With the increasing of deformation, the grain size shows opposite changing trends at both ends, and this mixed crystal phenomenon is particularly significant.

 
Funds:
基金项目:国家重点研发计划(2020YFB2008104)
AuthorIntro:
作者简介:谢一夔(1992-),男,博士研究生 E-mail:Asher_xykch@163.com 通信作者:王忠英(1967-),男,博士,教授级高工 E-mail:13357968558@163.com
Reference:

 \[1]  Wang G, Gao C, Zhang Y X,et al.Size effect on the fatigue performance of 18CrNiMo7-6 alloy steel\[J].Steel Research International,2021,92(9): 2100054.


 

\[2]  Yue Z,Shuyan W,Guang T X, et al.Effect of microstructure on fatigue-crack propagation of 18CrNiMo7-6 high-strength steel\[J].International Journal of Fatigue,2022,163: 107027.

 

\[3]  Bambach D M,Stieben A,Bleck W.18CrNiMo7-6 with TRIP-effect for increasing the damage tolerance of gear components-Part I: Alloy design\[J].Materials Science Forum,2014,3129(783-786):633-638.

 

\[4]  Wang G,Zhang Y,Gao C, et al.Effect of residual stress and microstructure on corrosion resistance of carburised 18CrNiMo7-6 steel\[J].Anti-Corrosion Methods and Materials,2020,67(4):357-366.

 

\[5]  李腾.700 MPa级汽车大梁钢的动态再结晶与数值模拟\[D].镇江:江苏大学,2019.

 

Li T. Dynamic Recrystallization and Numerical Simulation of 700 MPa Grade Automobile Beam Steel \[D]. Zhenjiang:Jiangsu University,2019.

 

\[6]  李帮松,曾祥帅,曾梦婷,等.锻造态GH4169高温合金热变形行为的有限元模拟\[J].热处理,2023,38(3):18-24.  

 

Li B S, Zeng X S, Zeng M T, et al. Finite element simulation of hot deformation behavior of as-forged GH4169 superalloy \[J]. Heat Treatment of Metals,2023,38(3):18-24. 

 

\[7]  邱媛媛.下压速率对42CrMo钢动态再结晶的影响规律\[J].锻压装备与制造技术,2022,57(2):106-109.

 

Qiu Y Y. Influence rule of pressing rate on dynamic recrystallization of 42CrMo steel\[J]. China Metalforming Equipment & Manufacturing Technology,2022,57(2):106-109.

 

\[8]  杜帅,李颖,李敏,等.H156热作模具钢动态再结晶的试验与数值模拟研究\[J].锻压技术,2023,48(1):245-252.

 

Du S, Li Y, Li M,et al. Experiment and numerical simulation study on dynamicrecrystallization for H156 hot work die steel\[J]. Forging & Stamping Technology,2023,48(1):245-252.

 

\[9]  苏斌,孙瑜蔓,陈刚,等. RM80超高强度钢热变形行为及有限元模拟\[J].锻压技术,2023,48 (11): 212-220. 

 

Su B, Sun Y M, Chen G, et al. Thermal deformation behavior and finite element simulation on RM80 ultra-high strength steel\[J]. Forging & Stamping Technology,2023,48 (11): 212-220. 

 

\[10]陶成,崔霞,欧阳德来,等. TC21钛合金热压缩工艺数值模拟与试验研究\[J].塑性工程学报, 2023, 30 (8): 195-201.

 

Tao C, Cui X, Ouyang D L,et al. Numerical simulation and experimental study on hot compression process of TC21 titanium alloy\[J]. Journal of Plasticity Engineering, 2023, 30 (8): 195-201.      

 

\[11]刘莹莹,李嘉懿,郭文虎,等.细晶TC4钛合金的动态再结晶行为及数值模拟\[J].稀有金属材料与工程,2022,51(11):4137-4145.

 

Liu Y Y, Li J Y, Guo W H,et al. Dynamic recrystallization behavior and numerical simulation of fine grain TC4 titanium alloy\[J]. Rare Metal Materials and Engineering,2022,51(11):4137-4145. 

 

\[12]Patryk J,Hugh S,Sumeet M, et al.Finite element modeling of hot compression testing of titanium alloys\[J].Journal of Materials Engineering and Performance,2022,31(9):7160-7175.

 

\[13]Irani M, Lim S, Joun M. Experimental and numerical study on the temperature sensitivity of the dynamic recrystallization activation energy and strain rate exponent in the JMAK model\[J]. Journal of Materials Research and Technology, 2019, 8(2): 1616-1627.


\[14]Xie Y K, Wang Q C, Chen Z K, et al.Recrystallization mechanism and processing map of 18CrNiMo7-6 alloy steel during hot deformation
[J]. Metals, 2022,12(5):838.

 

\[15]孙朝阳,李亚民,祥雨,等.316LN高温热变形行为与热加工图研究\[J].稀有金属材料与工程,2016,45(3):688-695. 

 

Sun Z Y, Li Y M, Xiang Y, et al. Hot deformation behavior and hot processing maps of 316LN stainless steel\[J]. Rare Metal Materials and Engineering,2016,45(3):688-695.

 

\[16]Xie Y K, Chen Z K,Zhu Q,et al.Study on recrystallization initiation model and microstructure evolution mechanism of 18CrNimo7-6 steel during hot deformation\[J].Transactions of the Indian Institute of Metals,2023,76(7):1841-1851.

 

\[17]He A,Xie G L,Zhang H L,et al. A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel\[J]. Materials and Design,2013,52: 699-714.

 

\[18]McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state\[J]. Journal of Materials Processing Technology, 1995, 53(1-2): 293-310.

 

\[19]Mirzadeh H,Najafizadeh A.Prediction of the critical conditions for initiation of dynamic recrystallization\[J].Materials & design,2010,31(3):1174-1179.

 

\[20]Zner C,Hollomon J H. Effect of strain rate upon plastic flow of steel\[J]. AppPhy, 1944, 15(1): 22-25.

 

\[21]姬雅倩,周旭东,陈学文,等.PCrNi3MoV钢变形抗力模型及热加工图\[J].塑性工程学报,2021,28(10):173-179.

 

Ji Y Q, Zhou X D, Chen X W, et al. Deformation resistance model and hot working map of PCrNi3MoV steel\[J]. Journal of Plasticity Engineering, 2021, 28(10): 173-179.

 

\[22]吴晓东,王联进,谢坚锋,等.F45MnVS非调质钢动态再结晶模型与晶粒尺寸数值模拟\[J].机械工程材料,2021,45(10):84-90.

 

Wu X D, Wang L J, Xie J F, et al. Dynamic recrystallization model and grain size numerical simulation of F45MnVS non-quenched and tempered steel\[J]. Materials for Mechanical Engineering, 2021, 45(10): 84-90.

 

\[23]陈元芳,汤萌,张涛.49MnVS3非调质钢静态再结晶模型研究\[J].热加工工艺,2016,45(20):79-82,85.

 

Chen Y F, Tang M, Zhang T. Study on static recrystallization model of 49MnVS3 non-quenched and tempered steel \[J]. Hot Working Technology, 2016, 45(20): 79-82,85.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com