Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot deformation behavior of superalloy GH4706 for turbine disk
Authors: Zhang Senfeng1  Yang Wenbin2  Xia Yufeng2  Yang Wei1  Zheng Deyu2  Teng Haihao2  Du Xiao2 
Unit: (1. National Erzhong Group Deyang Wanhang Die Forging Co.  Ltd.  Deyang 618000  China   2. School of Materials Science and Engineering  Chongqing University  Chongqing 400044  China) 
KeyWords: superalloy GH4706  friction-temperature correction  constitutive model  hot deformation behavior dynamic recrystallization 
ClassificationCode:TG132.3
year,vol(issue):pagenumber:2024,49(9):202-212
Abstract:

 The hot deformation behavior of forged superalloy GH4706 was studied by a Thermomastor-type hot simulation testing machine under the deformation temperature of 850-1100 ℃ and the strain rate of 0.001-0.1 s-1. Taking into account the adiabatic temperature rise and friction effects, the friction and temperature rise corrections were applied to the true stress-true strain curve, and the correlation coefficients r and average relative error AARE of Arrhenius and Hansel-Spittel models after friction-temperature correction were compared and analyzed. The results indicate that with the decreasing of temperature and increasing of strain rate, the overall deformation resistance of forged superalloy GH4706 gradually increases, and the error caused by the friction-temperature rise effect is also relatively greater. The correlation coefficients of Arrhenius and Hansel-Spittel models are 0.970 and 0.986, the average relative errors are 13.17% and 7.83%, respectively, and the prediction accuracy of the Hansel-Spittel model is higher. The dynamic recrystallisation of superalloy GH4706 is more sensitive to the temperature, and increasing temperature is beneficial for the dynamic recrystallization of alloy, while increasing strain rate inhibits the dynamic recrystallization of alloy.

 
Funds:
基金项目:国家重点研发计划(2022YFB3705103)
AuthorIntro:
作者简介:张森峰(1990-),男,硕士,工程师 E-mail:1247514463@qq.com 通信作者:夏玉峰(1972-),男,博士,教授 E-mail:yufengxia@cqu.edu.cn
Reference:

 \[1]  黄烁, 王磊, 张北江, 等. GH4706合金的热变形行为与显微组织演化\[J]. 材料工程, 2015, 43(2): 41-46.


 

Huang S, Wang L, Zhang B J, et al. Hot deformation behavior and microstructure evolution of GH4706 alloy\[J]. Journal of Materials Engineering, 2015, 43(2): 41-46.

 

\[2]  李奇, 秦鹤勇, 郭翠萍, 等. 镍基高温合金GH4706析出相的热力学计算与分析\[J]. 钢铁研究学报, 2017, 29(3): 208-215.  

 

Li Q, Qing H Y, Guo C P, et al. Thermodynamic calculation and theoretical analysis of equilibrium precipitation phases in Ni-based superalloy GH4706\[J]. Journal of Iron and Steel Research, 2017, 29(3): 208-215.

 

\[3]  张瑞, 刘鹏, 崔传勇, 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望\[J]. 金属学报, 2021, 57(10): 1215-1228. 

 

Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine discs in China\[J]. Acta Metallurgica Sinica, 2021, 57(10): 1215-1228.

 

\[4]  黄烁, 王磊, 张北江, 等. GH4706合金的动态再结晶与晶粒控制\[J]. 材料研究学报, 2014, 28(5): 362-370. 

 

Huang S, Wang L, Zhang B J, et al. Dynamic recrystallization behavior and grain size control of GH4706 superalloy\[J]. Chinese Journal of Materials Research, 2014, 28(5): 362-370.

 

\[5]  Han Y Z, Zhu H C, Qu J L, et al. Flow stress and dynamic recrystallization behavior and modeling of GH4738 superalloy during hot compression\[J]. Journal of Materials Research and Technology, 2023, 26: 4957-4974.

 

\[6]  Chen R C, Zheng Z Z, Li J J, et al. Constitutive modelling and hot workability analysis by microstructure examination of GH4169 alloy\[J]. Crystals, 2018, 8(7):282.

 

\[7]  Jia L, Cui H, Yang S F, et al. Hot deformation behavior and flow stress modeling of coarse-grain nickel-base GH4151 superalloy ingot materials in cogging\[J]. Journal of Materials Research and Technology, 2023, 26: 6652-6671.

 

\[8]  Gang C, Wei C, Li M, et al. Strain-compensated arrhenius-type constitutive model for flow behavior of Al-12Zn-2.4Mg-1.2Cu alloy\[J]. Rare Metal Materials and Engineering, 2015, 44(9): 2120-2125.  

 

 

\[9]  金鑫, 汪韬. 两阶段Arrhenius方程参数优化算法\[J]. 数值计算与计算机应用, 2022, 43(3): 329-342.

 

Jing X, Wang T. A parameter optimization igorithm for two stage Arrhenius equations\[J]. Journal on Numerical Methods and Computer Applications, 2022, 43(3): 329-342.

 

\[10]曹建国, 王天聪, 李洪波,等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系\[J]. 机械工程学报, 2016, 52(4): 90-96,102. 

 

Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented elctrical steel based on modified Arrhenius model\[J]. Journal of Mechanical Engineering, 2016, 52(4): 90-96,102.

 

\[11]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach\[J]. Materials Today Communications, 2023, 34:105210.

 

\[12]He A, Xie G L, Yang X Y, et al. A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel\[J]. Computational Materials Science, 2015, 98: 64-69.

 

\[13]Lin Y C, He M, Chen M S, et al. Effects of initial δ phase (Ni3Nb) on hot tensile deformation behaviors and material constants of Ni-based superalloy\[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 107-117.

 

\[14]Zhang B, Yue L, Chen H F, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models\[J]. Rare Metal Materials and Engineering, 2021, 50(1): 212-222.  

 

\[15]Fereshteh-Saniee F, Fatehi-Sichani F. An investigation on determination of flow curves at room temperature and under forming conditions\[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 478-482.

 

\[16]Roebuck B, Lord J D, Brooks M, et al. Measurement of flow stress in hot axisymmetric compression tests\[J]. Materials at High Temperatures, 2006, 23(2): 59-83.

 

\[17]Evans R W, Scharning P J. Axisymmetric compression test and hot working properties of alloys\[J]. Materials Science and Technology, 2001, 17(8): 995-1004.

 

\[18]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming\[J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143.

 

\[19]Wan Z P, Hu L X, Sun Y, et al. Hot deformation behavior and processing workability of a Ni-based alloy\[J]. Journal of Alloys and Compounds, 2018, 769: 367-375.

 

\[20]Goetz R L, Semiatin S L. The adiabatic correction factor for deformation heating during the uniaxial compression test\[J]. Journal of Materials Engineering and Performance, 2001, 10(6): 710-717.

 

\[21]Teng H H, Xia Y F, Sun T, et al. Flow stress prediction of near-beta Ti-55511 alloy during isothermal compression based on corrected arrhenius model with material parameter evolution and BP-ANN model\[J]. Rare Metal Materials Engineering, 2023, 52(3): 823-833.

 

\[22]Gholamadeh A, Taheri A K. The prediction of hot flow behavior of Al-6%Mg alloy\[J]. Mechanics Research Communications, 2009, 36(2): 252-259.

 

\[23]龙帅. 合金热变形行为快速求解方法与应用研究\[D]. 重庆:重庆大学, 2020. 

 

Long S. Research on the Rapid Solution and Analysis Method for Hot Deformation Behavior of Alloys and its Application\[D]. Chongqing:Chongqing University, 2020.

 

\[24]Hensel A, Spittel T. Kraft-und Arbeitsbedarf Bildsamer Formgebungsverfahren\[M]. Leipzig: Deutscher Verlag fur Grundstoffindutrie, 1978.

 

\[25]Shi S X, Liu X S, Zhang X Y, et al. Comparison of flow behaviors of near beta Ti-55511 alloy during hot compression based on SCA and BPANN models\[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1665-1679.

 

\[26]詹宗杨. 镍基超合金动态再结晶与晶粒生长模型构建及其应用\[D]. 重庆:重庆大学, 2017. 

 

Zhan Z Y. Construction of Dynamic Recrystallization and Grain Growth Models for Ni-based Superalloy as well as its Application\[D]. Chongqing:Chongqing University, 2017.

 

\[27]Wang J W, Chen Y B, Zhu Q, et al. Grain boundary dominated plasticity in metallic materials\[J]. Acta Metallurgica Sinica, 2022, 58(6): 726-745.

 

\[28]Guo Q M, Li D F, Guo S L, et al. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy\[J]. Journal of Nuclear Materials, 2011, 414(3): 440-450.      

 

\[29]Tian Y, Liu C, Cao H, et al. Research progress of dynamic recrystallization in metallic materials\[J]. Rare Metal Materials and Engineering, 2019, 48(11): 3764-3769.

 

\[30]Mcqueen H J. Development of dynamic recrystallization theory\[J]. Materials Science and Engineering:A, 2004, 387: 203-208.  

 

\[31]刘修苹, 杨素媛, 李先雨, 等. M54超强钢的热变形行为及显微组织研究\[J]. 兵器材料科学与工程, 2023, 46(2): 1-6.       

 

Liu X P, Yang S Y, Li X Y, et al. Hot deformation behavior and microstructure of M54 ultra-strength steel\[J]. Ordnance Material Science and Engineering, 2023, 46(2): 1-6.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com