Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Relationship between microstructure and fatigue property in a GPa-grade medium carbon δ-TRIP steel
Authors: Xu Xin1 2 Lu Yanpeng1 2 Wang Shu3 Guo Jinyu1 2 Liang Xiao1 2 Su Hongying1 2 
Unit: (1.State Key Laboratory of Metal Material for Marine Equipment and Application  Anshan 114009 China   2.Ansteel Iron & Steel Research Institute  Anshan 114009  China  3. Automotive Steel Marketing and Service Center of Angang Steel Company Limited  Anshan 114009  China) 
KeyWords: δ-TRIP steel  fatigue property  residual austenite  fracture morphology  pre-strain 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2024,49(9):213-219
Abstract:

 For a new type of GPa-grade medium carbon δ-TRIP steel, the fatigue tests with a loading frequency of 20 Hz and a cyclic stress ratio Rs of -1 were carried out, and P-S-N curves of the material were obtained at different survival rates. Then, the fracture morphology and crack extension paths of the material were analyzed, and the transformation of residual austenite under the fatigue condition as well as the influence of pre-strain amount on the fatigue properties of δ-TRIP steel were investigated in depth. The results show that the fatigue ultimate strength of the test δ-TRIP steel is about 361 MPa, and its fatigue crack source starts at the junction of parallel section and circular arc, the ductile fracture characteristics in the crack source and expansion area as well as brittle fracture characteristics in the instantaneous fracture area were exhibited. The majority of the residual austenite in the organization undergoes the TRIP effect under the action of external force, a small amount of residual austenite is conducive to improving the fatigue performance of the δ-TRIP test steel, and the pre-deformation affects the fatigue properties of δ-TRIP steel in different degrees. Thus, the larger the decline amount of pre-strain, the larger the degree of fatigue performance.

 
Funds:
AuthorIntro:
作者简介:徐 鑫(1983-),男,博士,正高级工程师 E-mail:ag_xuxin@163.com
Reference:

 \[1]  施瀚超,张学军,陈云峰,等. 贝氏体等温温度对含铝TRIP钢组织和性能的影响\[J]. 热加工工艺,2013,42(16): 69-72.


 

Shi H C, Zhang X J, Chen Y F, et al. Effect of bainite isothermal temperature on microstructure and properties of TRIP steel with Al \[J]. Hot Working Technology, 2013,42(16): 69-72.

 

\[2]  褚关润,方刚,路洪洲,等. 生命周期评价在钢材及汽车用钢中的研究现状与发展趋势\[J].钢铁研究学报, 2023, 35(10):1196-1206.

 

Chu G R, Fang G, Lu H Z, et al. Research status and development direction of life cycle assessment in steel products and automotive steel\[J]. Journal of Iron and Steel Research,2023,35(10):1196-1206.

 

\[3]  赵征志,陈伟健,高鹏飞,等.先进高强度汽车用钢研究进展及展望\[J].钢铁研究学报,2020,32(12):1059-1076.

 

Zhao Z Z, Chen W J, Gao P F, et al. Progress and prospective of advanced high strength automotive steel \[J]. Journal of Iron and Steel Research,2020,32(12):1059-1076.

 

\[4]  王存宇,杨洁,常颖,等.先进高强度汽车钢的发展趋势与挑战\[J].钢铁,2019,54(2):1-6.

 

Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels\[J]. Iron and Steel, 2019, 54(2): 1-6.

 

\[5]  谢磊磊,唐荻,江海涛,等.汽车用先进高强钢的成形性能\[J].塑性工程学报,2013,20(1):84-88.

 

Xie L L, Tang D, Jiang H T, et al. Study on formability of advanced high strength steel for automobiles \[J].Journal of Plasticity Engineering, 2013,20(1):84-88.

 

\[6]  刘强,江海涛,唐荻,等.TRIP钢中残余奥氏体的分布及相变行为\[J].物理测试,2008(4):21-25,45.

 

Liu Q, Jiang H T, Tang D, et al. Distribution and transformation behavior of retained austenite in TRIP steel \[J]. Physics Examination and Testing,2008(4):21-25,45.

 

\[7]  史文,李麟,周媛,等. Mn含量对0.15C-0.6Si-Mn TRIP钢组织和力学性能的影响\[J]. 金属热处理,2002,2(8): 9-12.

 

Shi W, Li L, Zhou Y, et al. Effect of Mn content on microstructures and mechanical properties of cold rolled 0.15C-0.6Si-Mn TRIP steels\[J]. Heat Treatment of Metals,2002,2(8): 9-12.

 

\[8]  洪济舟,宋双喜,王俊峰,等. Nb-Mo微合金化对δ-TRIP钢组织和力学性能的影响\[J]. 金属热处理,2019,44(5): 1-6.

 

Hong J Z, Song S X, Wang J F, et al. Effect of Nb-Mo microalloying on microstructure and mechanical properties of δ-TRIP steel\[J]. Heat Treatment of Metals,2019,44(5): 1-6.

 

\[9]  Shiri S G, Jahromi S A J, Palizdar Y, et al. Unexpected effect of Nb addition as a microalloying element on mechanical properties of δ-TRIP steels \[J]. Journal of Iron and Steel Research International, 2016, 23(9): 988-996.

 

\[10]易红亮,陈蓬,王国栋,等. δ-TRIP钢的物理与力学冶金\[J].中国工程科学,2014, 16(2): 18-30.

 

Yi H L, Chen P, Wang G D, et al. δ-TRIP steel:Physical and mechanical metallurgy\[J]. Strategic Study of CAE,2014,16(2): 18-30.

 

\[11]GB/T 3075—2021,金属材料  疲劳试验  轴向力控制方法 \[S].

 

GB/T 3075—2021,Metallic materials—Fatigue testing—Axial force controlled method \[S].

 

\[12]GB/T 228.1—2010,金属材料  拉伸试验  第1部分:室温试验方法 \[S].

 

GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature\[S].

 

\[13]Zhao Y X, Yang B, Zhang W H. Reconstruction of the material probabilistic SN relations under fatigue life following lognormal distribution I-without given confidence \[J]. Key Engineering Materials, 2006, 324-325(2): 1043-1046.

 

\[14]Pascual F G. Optimal test planning for the fatigue-limit model when the fatigue-limit distribution is known \[J]. IEEE Transactions on Reliability, 2004, 53(2): 284-292.

 

\[15]Gope P C. Determination of sample size for estimation of fatigue life by using Weibull or log-normal distribution \[J]. International Journal of Fatigue, 1999, 21(8): 745-752.

 

\[16]孟迪. P-S-N曲线拟合方法与斜拉索概率寿命预测\[D].沈阳:东北大学, 2011.

 

Meng D. The Fitting Methods of P-S-N Curves and Prediction on Probabilistic Life for Stay Cable\[D]. Shenyang:Northeastern University,2011.

 

\[18]Wang G Y, Ma M T, Jin Q S, et al. A high-frequency fatigue accelerated measuring method for P-S-N curve and fatigue limit-science direct \[A]. The University of Sydney, Recent Advances in Structural Integrity Analysis\[C]. Sydney: Chinese Mechanical Engineering Society, 2014.

 

\[19]孙茂才. 金属力学性能\[M]. 哈尔滨: 哈尔滨工业大学出版社,2010.

 

Sun M C. Metal Mechanical Properties\[M].Harbin:Harbin Institute of Technology Press,2010.

 

\[20]Akiniwa Y, Tanaka K, Kinefuchi M. Effect of microstructure on propagation and non-propagation of short fatigue cracks at notches \[J]. Journal of the Society of Materials Science Japan, 1989, 38(434): 1275-1281.

 

\[21]Lin Y C, Deng J, Jiang Y Q, et al. Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy \[J]. Materials & design, 2014, 55(3): 949-957.

 

\[22]Smith E. The stability of a penny-shaped crack in a solid subject to an applied tensile stress \[J]. International Journal of Fracture, 1984, 24(4): 279-287.

 

\[23]Mcauliffe C, Waisman H. A unified model for metal failure capturing shear banding and fracture \[J]. International Journal of Plasticity, 2015, 65: 131-151.

 

\[24]班丽丽,惠卫军,雍岐龙,等. 残余奥氏体对中碳TRIP钢疲劳性能的影响\[J]. 材料研究学报, 2007,21: 196-200.

 

Ban L L, Hui W J, Yong Q L, et al. Effect of retained austenite on the fatigue properties of medium carbon TRIP steels \[J]. Chinese Journal of Materials Research, 2007,21: 196-200.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com