Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Composite deformation behavior of electrically assisted asymmetrical rolling for stainless steel/carbon steel
Authors: Xiang Boyang1 2  Ruan Jinhua1 2  Zhang Lisheng1 2  Long Ding1 2 
Unit: 1.Key Laboratory of Metallurgical Equipment and Control Technology  Ministry of Education  Wuhan University of Science and Technology 2. Precision Manufacturing Institute  Wuhan University of Science and Technology 
KeyWords: stainless steel carbon steel electrically assisted asymmetrical rolling  asymmetrical ratio  deformation behavior  shear strain 
ClassificationCode:TG335.81
year,vol(issue):pagenumber:2024,49(11):55-61
Abstract:

 To improve the bonding strength of rolling composite interface for stainless steel/carbon steel, the shear deformation of stainless steel/carbon steel composite surface was enhanced by electrically assisted asymmetrical rolling process. In light of the shear deformation detail of stainless steel/carbon steel in  the electrically assisted asymmetrical rolling process, the composite process of electrically assisted asymmetrical rolling for stainless steel/carbon steel with different asymmetrical ratios was simulated by finite element method, and the temperature field, equivalent strain rate, current density distribution, surface velocity and shear strain were analyzed. The results show that the speed difference of two rolled parts is increased by electrically assisted a symmetrical rolling, and the total shear strain of composite surface, especially the stainless steel side, can be significantly increased by applying the asymmetrical ratio to adjust the speed difference in the deformation zone and introduce the rolling zone. With the decreasing of asymmetrical ratio,the deformation goes deeper into the composite surface of rolled piece, and the total shear strain is increased,which provides the theoretical guidance for the research of stainless steel/carbon steel rolling composite process and the development of new technology.

Funds:
国家自然科学基金资助项目(51701145)
AuthorIntro:
作者简介:相博洋(1998-),男,硕士研究生 E-mail:xby981212@icloud.com 通信作者:阮金华(1985-),男,博士,副教授 E-mail:Ruan_Jinhua@wust.edu.cn
Reference:

 [1]祖国胤,王宁,于九明,.不锈钢/碳钢冷轧复合机理的研究[J].钢铁研究,2004(4):32-34,38.


Zu G Y, Wang N, Yu J M, et al. Research on bonding mechanism of composite cold[J]. Research on Iron and Steel,2004(4):32-34,38.


[2]Qin Q, Zhang D T, Zang Y, et al. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate[J]. Advances in Mechanical Engineering2015,7(7): 439-447.


[3]李龙,张心金,刘会云,.热轧不锈钢复合板界面氧化物夹杂的形成机制[J].钢铁研究学报,2013,25(1):43-47.


Li L, Zhang X J, Liu H Y, et al. Formation mechanism of oxide inclusion on the interface of hot-rolled stainless steel clad plates[J]. Journal of Iron and Steel Research, 2013,25(1):43-47.


[4]Perkins Timothy A, Kronenberger Thomas J, Roth John T. Metallic forging using electrical flow as an alternative to warm/hot working[J]. Journal of Manufacturing Science and Engineering, 2007,129(1):84-94.


[5]祖国胤,李红斌,李兵,.高频电流在线加热对不锈钢/碳钢复合带组织与性能的影响[J].金属学报,2007(10):1048-1052.


Zu G Y, Li H B, Li B, et al. Effect of high-frequency current heating online process on microstructures and mechanical property of stainless steel/carbon steel cladding strip[J]. Acta Metallurgica Sinica, 2007(10):1048-1052.


[6]陆子川,姜风春,侯红亮,.高能脉冲电流对金属材料的作用机理[J].塑性工程学报,2015,22(4):117-127.Lu Z C, Jiang F C, Hou H L, et al. Progress on mechanisms study of high energy electropulsing on metals[J]. Journal of Plasticity Engineering, 2015,22(4):117-127.


[7]孙利娜. 冷轧复合的力学机理与电脉冲辅助复合轧制实验研究[D].秦皇岛:燕山大学,2021.


Sun L N. Mechanical Mechanism of Cold Rolling Compound and Experimental Study of Electric Pulse Assisted Compound Rolling[D]. Qinhuangdao: Yanshan University, 2021.


[8]曹通,郑小平,谢文杰,.异步轧制温度对SPCC/AM60/SPCC复合板组织与性能的影响[J].热加工工艺, 2023,52(17):68-72.


Cao T, Zheng X P, Xie W J, et al. Effect of asynchronous rolling temperature on microstructure and properties of SPCC/AM60/SPCC composite plate[J]. Hot Working Technology, 2023,52(17):68-72.


[9]汤德林,刘相华.异步轧制搓轧区几何参数[J].钢铁,2015,50(4):34-39.


Tang D L, Liu X H. Geometric parameters in cross shear zone of asymmetrical rolling[J]. Iron & Steel, 2015,50(4):34-39.


[10]陈连生,张鑫磊,郑小平,.轧制双金属复合板材的研究现状[J].稀有金属材料与工程, 2018,47(10):3243-3250.


Chen L S, Zhang X L, Zheng X P, et al. Research status of bimetal laminated composite plate prepared by rolling process[J]. Rare Metal Materials and Engineering, 2018,47(10):3243-3250.


[11]Tadanobu Inoue, Nobuhiro Tsuji. Quantification of strain in accumulative roll-bonding under unlubricated condition by finite element analysis[J]. Computational Materials Science, 2009,46(1):261-266.


[12]张健民. 电辅助不锈钢/碳钢轧制复合再结晶模拟研究[D]. 武汉: 武汉科技大学,2023.


Zhang J M. Simulation Study on Composite Recrystallization of Electrically Assisted Stainless Steel/Carbon Steel Rolling[D]. Wuhan: Wuhan University of Science and Technology, 2023.


[13]林继彬,阮金华,张宏昱,.电辅助不锈钢/碳钢轧制复合厚度比变化规律[J].锻压技术,2023,48(9):98-107.


Lin J B, Ruan J H, Zhang H Y, et al. Change law on composite thickness ratio in electrically assisted rolling for stainless steel /carbon steel[J]. Forging & Stamping Technology, 2023,48(9):98-107.


[14]马存强,侯陇刚,庄林忠,.铝合金板材同步/异步轧制变形行为有限元分析[J].塑性工程学报,2018,25(6):125-132.


Ma C Q, Hou L G, Zhuang L Z, et al. Finite element simulation of deformation behavior during conventional and asymmetric rolling of aluminum alloy sheet[J]. Journal of Plasticity Engineering, 2018,25(6):125-132.


[15]Kamikawa N, Sakai T, Tsuji N. Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel[J]. Acta Materialia, 2007,55(17):5873-5888.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com