Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hydrogen embrittlement behavior on solid solution 304 austenitic stainless steel
Authors: Zhang Huiyun1 Sun Xiaosi1 Sun Ying1  Zheng Liuwei2 
Unit: 1. Department of Metallurgical Engineering  Shanxi Engineering Vocational College  2. School of Materials Science and Engineering Taiyuan University of Technology 
KeyWords: austenitic stainless steel  hydrogen embrittlement  α′-martensite  grain boundary  twin boundary 
ClassificationCode:TG142.71
year,vol(issue):pagenumber:2024,49(11):189-201
Abstract:

 The interaction between the static and dynamic microstructure evolution of solid solution 304 austenitic stainless steel (ASS) with homogeneous austenitic structure and hydrogen was studied. The results show that solid solution ASS has low sensitivity to hydrogen embrittlement and good resistance to hydrogen embrittlement, but low strength, making it suitable for situations where high resistance to hydrogen embrittlement is required, but low strength is not. Then, through in-situ tensile experiments, it is revealed that tensile deformation promoted α′-martensite transformation, while hydrogen is used as a defect to reduce the layer fault energy, further promoting α′-martensite transformation, which nucleates at the twin boundary and slip bands. After the hydrogen charging and tensile fracture of solid solution ASS, the brittle fracture at the edge is river shaped cleavage fracture and tearing edge quasi-cleavage fracture. On the one hand, hydrogen promotes the martensitic transformation, and enhances the stress concentration and the strain localization at the twin boundary of the material on the other hand. During the tensile process, micro-cracks initiates and propagate along the nucleation position of α′-martensite, that is, the twin boundary, while promoting the dislocation movement at the crack tip, leading to the material fracture.

Funds:
山西省高等学校科技创新项目(2024L592);山西工程职业学院2024年度揭榜挂帅课题(KY2024-1);山西省科技计划青年科学研究项目(202303021212306);2023 年山西省职业教育教学改革与实践研究项目(202301005);山西工程职业学院校企合作课题(XQ2022-01)
AuthorIntro:
作者简介:张慧云(1987-),女,博士,副教授 E-mail:245883278@qq.com
Reference:

[1]Chen X Y, Zhou C S, Zheng J Y, et al. Effects of α′ martensite and deformation twin on hydrogen-assisted fatigue crack growth in cold/warm-rolled type 304 stainless steel [J]. International Journal of Hydrogen Energy, 2018, 43(6): 3342-3352.


[2]Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels [J]. Materials Science and Engineering:R, 2009, 65(4-6): 39-104.

[3]范宇恒.不锈钢微观组织结构对其氢脆性能的影响 [D]. 沈阳: 中国科学技术大学, 2019.

Fan Y H. Effect of Microstructures on the Hydrogen Embrittlement of Stainless Steels [D]. Shenyang: University of Science and Technology of China, 2019.

[4]Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Materialia, 2012, 60(19): 6814-6828.

[5]Brass A M, Chanfreau A. Accelerated diffusion of hydrogen along grain boundaries in nickel [J]. Acta Materialia, 1996, 44(9): 3823-3831.

[6]Mine Y, Tachibana K, Horita Z. Grain-boundary diffusion and precipitate trapping of hydrogen in ultrafine-grained austenitic stainless steels processed by high-pressure torsion [J]. Materials Science and Engineering: A, 2011, 528(28): 8100-8105.

[7]Yao J, Cahoon J R. Experimental studies of grain boundary diffusion of hydrogen in metals [J]. Acta Metallurgica et Materialia, 1991, 39(1): 119-126.

[8]Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Materials Science and Engineering: A, 2012, 552: 514-522.

[9]Zhou C S, Song Y Y, Shi Q Y, et al. Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26036-26048.

[10]Li X G, Gong B M, Deng C Y, et al. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading [J]. Corrosion Science, 2018, 130: 241-251.

[11]Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Materials Science and Engineering: A, 2016, 658: 400-408.

[12]Perng T P, Altstetter C J. Effects of deformation on hydrogen permeation in austenitic stainless steels [J]. Acta Metallurgica, 1986, 34(9): 1771-1781.

[13]Perng T P, Altatetter C J. Cracking kinetics of two phase stainless steel alloys in hydrogen gas [J]. Metallurgical Transactions A, 1988, 19: 145-152.

[14]Poundb G. The application of a diffusion-trapping model for hydrogen ingress in high-strength alloys[J]. National Association of Corrosion Enpineers, 1989, 45(1): 19-25.

[15]Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29(11): 1701-1706.

[16]Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron [J]. Metallurgical Transactions A, 1982, 13:135-140.

[17]Sun G S, Du L X, Hu J, et al. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel [J]. Materials Science and Engineering: A, 2019, 746: 341-355.

[18]褚武扬, 乔利杰, 李金许,等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013.

Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion [M]. Beijing: Science Press, 2013.

[19]Wang D, Lu X, Wan D, et al. In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging [J]. Scripta Materialia, 2019, 173: 56-60.

[20]Allain S, Cugy P, Scott C. The influence of plastic instabilities on the mechanical properties of a high-manganese austenitic FeMnC steel [J]. Zeitschrift fur Metallkunde, 2008, 99(7): 734-738.

[21]Mao L Y, Luo Z A, Huang C, et al. Hydrogen embrittlement behavior in interstitial Mn-N austenitic stainless steel [J]. International Journal of Hydrogen Energy, 2022, 47(86): 36716-36732.

[22]Jedrychowski M, Tarasiuk J, Bacroix B, et al. Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium.A new approach in grain boundary analysis [J]. Journal of Applied Crystallography, 2013, 46(2): 483-492.

[23]Han G, He J, Fukuyama S, et al. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures [J]. Acta Materialia, 1998, 46(13): 4559-4570.

[24]Murakami Y, Kanezaki T, Mine Y, et al. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels [J]. Metallurgical and Materials Transactions A, 2008, 39: 1327-1339.

[25]Wang Y F, Li X F, Dou D Y, et al. FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel [J]. International Journal of Hydrogen Energy, 2016, 41(14): 6053-6063.

[26]Ahn D C, Sofronis P, Dodds J R H. On hydrogen-induced plastic flow localization during void growth and coalescence [J]. International Journal of Hydrogen Energy, 2007, 32(16): 3734-3742.

[27]Yokobori J A T, Nemoto T, Satoh K, et al. Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip [J]. Engineering Fracture Mechanics, 1996, 55(1): 47-60.

[28]Wang M Q, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation [J]. Corrosion Science, 2006,48(8): 2189-2202.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com