[1]Chen X Y, Zhou C S, Zheng J Y, et al. Effects of α′ martensite and deformation twin on hydrogen-assisted fatigue crack growth in cold/warm-rolled type 304 stainless steel [J]. International Journal of Hydrogen Energy, 2018, 43(6): 3342-3352.
[2]Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels [J]. Materials Science and Engineering:R, 2009, 65(4-6): 39-104.
[3]范宇恒.不锈钢微观组织结构对其氢脆性能的影响 [D]. 沈阳: 中国科学技术大学, 2019.
Fan Y H. Effect of Microstructures on the Hydrogen Embrittlement of Stainless Steels [D]. Shenyang: University of Science and Technology of China, 2019.
[4]Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Materialia, 2012, 60(19): 6814-6828.
[5]Brass A M, Chanfreau A. Accelerated diffusion of hydrogen along grain boundaries in nickel [J]. Acta Materialia, 1996, 44(9): 3823-3831.
[6]Mine Y, Tachibana K, Horita Z. Grain-boundary diffusion and precipitate trapping of hydrogen in ultrafine-grained austenitic stainless steels processed by high-pressure torsion [J]. Materials Science and Engineering: A, 2011, 528(28): 8100-8105.
[7]Yao J, Cahoon J R. Experimental studies of grain boundary diffusion of hydrogen in metals [J]. Acta Metallurgica et Materialia, 1991, 39(1): 119-126.
[8]Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Materials Science and Engineering: A, 2012, 552: 514-522.
[9]Zhou C S, Song Y Y, Shi Q Y, et al. Effect of pre-strain on hydrogen embrittlement of metastable austenitic stainless steel under different hydrogen conditions [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26036-26048.
[10]Li X G, Gong B M, Deng C Y, et al. Failure mechanism transition of hydrogen embrittlement in AISI 304 K-TIG weld metal under tensile loading [J]. Corrosion Science, 2018, 130: 241-251.
[11]Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Materials Science and Engineering: A, 2016, 658: 400-408.
[12]Perng T P, Altstetter C J. Effects of deformation on hydrogen permeation in austenitic stainless steels [J]. Acta Metallurgica, 1986, 34(9): 1771-1781.
[13]Perng T P, Altatetter C J. Cracking kinetics of two phase stainless steel alloys in hydrogen gas [J]. Metallurgical Transactions A, 1988, 19: 145-152.
[14]Poundb G. The application of a diffusion-trapping model for hydrogen ingress in high-strength alloys[J]. National Association of Corrosion Enpineers, 1989, 45(1): 19-25.
[15]Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29(11): 1701-1706.
[16]Choo W Y, Lee J Y. Thermal analysis of trapped hydrogen in pure iron [J]. Metallurgical Transactions A, 1982, 13:135-140.
[17]Sun G S, Du L X, Hu J, et al. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel [J]. Materials Science and Engineering: A, 2019, 746: 341-355.
[18]褚武扬, 乔利杰, 李金许,等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013.
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion [M]. Beijing: Science Press, 2013.
[19]Wang D, Lu X, Wan D, et al. In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging [J]. Scripta Materialia, 2019, 173: 56-60.
[20]Allain S, Cugy P, Scott C. The influence of plastic instabilities on the mechanical properties of a high-manganese austenitic FeMnC steel [J]. Zeitschrift fur Metallkunde, 2008, 99(7): 734-738.
[21]Mao L Y, Luo Z A, Huang C, et al. Hydrogen embrittlement behavior in interstitial Mn-N austenitic stainless steel [J]. International Journal of Hydrogen Energy, 2022, 47(86): 36716-36732.
[22]Jedrychowski M, Tarasiuk J, Bacroix B, et al. Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium.A new approach in grain boundary analysis [J]. Journal of Applied Crystallography, 2013, 46(2): 483-492.
[23]Han G, He J, Fukuyama S, et al. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures [J]. Acta Materialia, 1998, 46(13): 4559-4570.
[24]Murakami Y, Kanezaki T, Mine Y, et al. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels [J]. Metallurgical and Materials Transactions A, 2008, 39: 1327-1339.
[25]Wang Y F, Li X F, Dou D Y, et al. FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel [J]. International Journal of Hydrogen Energy, 2016, 41(14): 6053-6063.
[26]Ahn D C, Sofronis P, Dodds J R H. On hydrogen-induced plastic flow localization during void growth and coalescence [J]. International Journal of Hydrogen Energy, 2007, 32(16): 3734-3742.
[27]Yokobori J A T, Nemoto T, Satoh K, et al. Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip [J]. Engineering Fracture Mechanics, 1996, 55(1): 47-60.
[28]Wang M Q, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation [J]. Corrosion Science, 2006,48(8): 2189-2202.
|