Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation analysis and structural optimization on bending forming of 7050 aluminum alloy nonequal thickness panel with ribs
Authors: Chen Lele1  Hu Deyou1 Wang Zhen1  Zhang Shiqian1 Chu Guannan2 Wang Yue3  Lou Shumei3  
Unit: (1. Tianjin Aerospace Long March Vehicle Manufacturing Co.  Ltd.  Tianjin 300462 China  2. School of Materials Science and Engineering  Harbin Institute of Technology (Weihai) Weihai 264209 China  3. Department of Intelligent Equipment  Shandong University of Science and Technology  Taian 271019  China ) 
KeyWords: non-equal thickness panel  bending forming  crack  circumferential ribs stress concentration 
ClassificationCode:TG386
year,vol(issue):pagenumber:2024,49(12):52-58
Abstract:

 For the cracks generated during the three-point bending process of a large aluminum alloy non-equal thickness panel, the reason for the cracks was analyzed by software ABAQUS simulation, which was the changes in thickness of panel thick zone and transition zone, as well as the stress concentration on the heading crossbeam. Then, two structural optimization schemes were proposed, and the stress and strain distribution characteristics in each scheme during the bending process of non-equal thickness panels were analyzed by combining the numerical simulation with experiment. The results show that the gradual change in width of circumferential ribs improves the compression resistance of circumferential ribs near the thick zones and reduces the stress concentration. The moderate extension of the thick zone can solve the problem of difficult plastic forming due to excessive stiffness in the thick zone. The combination of both results in the most uniform distribution of three-point bending normal stress and shear stress and reduce the shear stress. At the same time, the problem of warping caused by the excessive thickness changes in the original model and the simple gradual change scheme of circumferential rib is solved.

 
Funds:
AuthorIntro:
作者简介:陈乐乐(1986-),女,硕士,工程师 E-mail:chenlele86@126.com 通信作者:初冠南(1979-),男,博士,教授 E-mail:chuguannan@163.com
Reference:

 
[1]吴增辉,李永华.有色金属整体壁板成形技术研究进展
[J].有色金属加工,2023,52(4):6-10,16.


 

Wu Z H, Li Y H.Research progress of nonferrous integral panel forming technology
[J]. Nonferrous Metals Processing, 2023,52(4):6-10,16.

 


[2]李勇,李东升,李小强.大型复杂壁板构件塑性成形技术研究与应用进展
[J].航空制造技术,2020,63(21):36-45.

 

Li Y, Li D S, Li X Q. A review of plastic technologies and applications for large and complexshaped panels
[J]. Aeronautical Manufacturing Technology, 2020,63(21):36-45.

 


[3]齐晗. 筋板件筋部充填机理及缺陷研究
[D].哈尔滨:哈尔滨工业大学,2010.

 

Qi H. Research on Filling Mechanism and Defects of Reinforcement Part of Reinfocing Plase
[D].Harbin:Harbin Institute of Technology,2010.

 


[4]李锋,王明涛,白雪飘,等.喷丸成形2024铝合金整体带筋壁板变形规律研究
[J].精密成形工程,2022,14(9):18-23.

 

Li F, Wang M T,Bai X P,et al. Deformation law of 2024 aluminum alloy stiffened integral panel by shot peen forming
[J].Journal of Netsshape Forming Engineering,2022,14(9):18-23.

 


[5]曾元松, 黄遐.大型整体壁板成形
[J].航空学报,2008,29(3):721-727.

 

Zeng Y S,Huang X. Forming technologies of large integral panel
[J].Acta Aeronautica et Astronautica Sinica,2008,29(3):721-727. 

 


[6]叶景申, 张宝红,于建民,等. 筋板类构件成形技术研究进展
[J].锻压装备与制造技术,2015,50(2):7-10.

 

Ye J S,Zhang B H,Yu J M,et al.Research progress of component with rib forming technology
[J].China Metal Forming Equipment & Manufacturing Technology,2015,50(2):7-10.

 


[7]郝永刚,张志超, 祝全超,等. 铝合金带筋板柔性多点模渐进压弯成形工艺仿真与试验
[J].塑性工程学报,2020,27(11):12-17.

 

Hao Y G,Zhang Z C, Zhu Q C, et al. Simulation and experiment on progressive bending of flexible multipoint mold of aluminum alloy stiffened panel
[J]. Journal of Plasticity Engineering, 2020,27(11):12-17.

 


[8]李永鹏,徐豫新,杨祥,等.冲击载荷作用下机身壁板破坏效应及结构优化
[J].振动与冲击,2023,42(14):40-47.

 

Li Y P,Xu Y X,Yang X,et al.Failure effect and structure optimization of a fuselage panel under impact load
[J].Journal of Vibration and Shock,2023,42(14):40-47.

 


[9]吴增辉.AZ31变形镁合金整体壁板的弯曲成形研究
[D].沈阳:沈阳理工大学,2023.

 

Wu Z H.Research on Bend Forming of AZ31 Wrought Magnesium Alloy Integral Panel
[D].Shenyang:Shenyang Ligong University,2023.

 


[10]王忠堂,吴凯琦,张宏亮,等.AZ31镁合金网格式壁板级进压弯成形试验研究
[J].热加工工艺,2023,52(3):88-91.

 

Wang Z T,Wu K Q,Zhang H L,et al.Experrimental study on progressive compression bending of AZ31 magnesium alloy grid panel
[J].Hot Working Technology,2023,52(3):88-91.

 


[11]刘相柱,陈沛,刘晓,等.航天器X型整体壁板加工变形控制技术研究
[J].机械科学与技术,2023,42(2):223-230.

 

 Liu X Z,Chen P,Liu X,et al.Study on deformation control technology of Xshape integral panel for spacecraft
[J].Mechanical Science and Technology for Aerospace Engineering,2023,42(2):223-230.

 


[12]乐晨,曹昱,杨帆,等.基于Abaqus的等边三角形网格加筋壳建模分析方法及试验验证研究
[J].导弹与航天运载技术,2019(2):12-16.

 

Le C,Cao Y,Yang F,et al.The analysis method and experimental verification of isogrid stiffened shell based on Abaqus
[J].Missiles and Space Vehicles,2019(2):12-16.

 


[13]Leon C M, Kohlgrüber D, Langrand B.Analysis of fuselage skin reinforcements with beam element models in flexible aircraft panels for ditching simulations
[J].IOP Conference Series:Materials Science and Engineering, 2021,1024(1):012054. 

 


[14]Boitsov V B,Gavva M L,Endogur I A, et al.Stressstrain state and buckling problems of structurallyanisotropic aircraft panels made of composite materials in view of production technology
[J].Russian Aeronautics,2018,61(4):524-532.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com