Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Prediction on stamping springback for DP980 high strength steel U-shaped part
Authors: Hu Xiao1 2  Wang Yusheng2  Liu Yong3  Jin Yang1  Wang Liangyun1  Yu Cansheng1  Wang Feilong1  Xu Ye 2   Zeng Ningfu2  Lin Yongcheng2 
Unit: (1. Pangang Group Research Institute Co.  Ltd.  Panzhihua 617000  China 2. School of Mechanical and Electrical Engineering    Central South University  Changsha 410083  China 3. Pangang Group Panzhihua Steel and Vanadium Co.  Ltd.   Panzhihua 617000  China) 
KeyWords: stamping springback  yield criterion  DP980 high strength steel  hybrid hardening-elastic modulus attenuation model  VUMAT UMAT 
ClassificationCode:TG430
year,vol(issue):pagenumber:2024,49(12):73-81
Abstract:

 Accurate prediction on stamping springback behavior of U-shaped part is one of the urgent problems to be solved in the manufacturing industry. Therefore, based on Hill48 yield criterion, hybrid hardening model and elastic modulus attenuation model, the stamping springback prediction model for DP980 high-strength steel was established by uniaxial tensile test and cyclic loading test, and the finite element simulation model for stamping springback of U-shaped part was established by using software ABAQUS. Furthermore, the hybrid hardening-elastic modulus attenuation prediction model was established, which was embedded into VUMAT and UMAT solving subroutines by secondary development, and the prediction results of isotropic hardening model, hybrid hardening model and the prediction model proposed were compared and analyzed in the springback simulation of U-shaped parts. The results show that based on the established hybrid hardening-elastic modulus attenuation model and the finite element simulation model, the stamping springback behavior of DP980 high strength steel  U-shaped part can be accurately predicted, and the prediction error of springback angle is only 0.17%.

 
Funds:
基金项目:四川省攀西试验区重大科技攻关项目(第六批项目)
AuthorIntro:
作者简介:胡晓(1990-),男,博士研究生,高级工程师 E-mail:hgdxiaohu@163.com 通信作者:蔺永诚(1976-),男,博士,教授 E-mail:yclin@csu.edu.cn
Reference:

 
[1]罗海文,沈国慧. 超高强高韧化钢的研究进展和展望
[J]. 金属学报, 2020, 56 (4): 494-512.


 

Luo H W,Shen G H. Progress and perspective of ultrahigh strength steels having high toughness
[J]. Acta Metallurgica Sinica, 2020, 56 (4): 494-512.

 


[2]赵春梅,王恒,王俊,等.涡轮冲压组合喷管运动机构布局研究综述
[J/OL].航空发动机,1-7
[2024-11-15].

 

Zhao C M, Wang H, Wang J, et al. Review on movement mechanism configuration of TBCC nozzle
[J/OL]. Aeroengine,1-7
[2024-11-15].

 


[3]Han F, Cao Z B. Inelastic recovery of Q&P980 ultra high strength steel with a complicated deformation path
[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(10):921-928.

 


[4]李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究
[D]. 合肥:中国科学技术大学, 2019.

 

Li H F. Investigation on Fracture Toughness and Crack Growth Mechanism of Highstrength Steels
[D]. Hefei: University of Science and Technology of China, 2019.

 


[5]潘俊杰. DP780高强钢板材成形极限及回弹研究
[D]. 襄阳:湖北文理学院, 2023.

 

Pan J J. Study on Forming Limit and Springback of DP780 Highstrength Steel Sheet
[D]. Xiangyang: Hubei University of Arts and Sciences, 2023.

 


[6]Lu Z P, Li D, Cao L L, et al. Springback control in complex sheetmetal forming based on advanced highstrength steel
[J]. Coatings, 2023, 13(5): 930.

 


[7]Chen J J, Cao J J, Zhao Q F, et al. A novel approach to springback control of highstrength steel in cold roll forming
[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 1793-1804.

 


[8]Yoshida F, Uemori T. A model of largestrain cyclic plasticity describing the bauschinger effect and workhardening stagnation
[J]. International Journal of Plasticity, 2002, 18(5-6): 661-686.

 


[9]刘子健. 基于YLD2000-2D屈服准则和变弹性模量的Ti-6Al-4V材料本构模型及应用
[D]. 太原:太原科技大学, 2021.

 

Liu Z J. The Constitutive Model and Application of Ti-6Al-4V Material Based on YLD2000-2D Yield Criterion and Variable Elastic Modulus
[D]. Taiyuan: Taiyuan University of Science and Technology, 2021.

 


[10]李潇逸. 铝合金板塑性成形非线性弹性行为研究
[D]. 秦皇岛:燕山大学, 2022.

 

Li X Y. Study on Nonlinear Elastic Behavior of Aluminum Alloy Sheet in Plastic Forming
[D]. Qinhuangdao: Yanshan University, 2022.

 


[11]徐虹,刘亚楠,于婷,等. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理
[J]. 吉林大学学报(工学版), 2017, 47 (1): 191-198.

 

Xu H, Liu Y N, Yu T, et al. Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loadingunloading
[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47 (1): 191-198.

 


[12]申丹凤,聂昕,陈建. 6082-T6挤压铝合金防撞梁压弯成形及回弹补偿
[J]. 塑性工程学报, 2023, 30 (7): 15-22.

 

Shen D F, Nie X, Chen J. Bending forming and springback compensation of 6082-T6 extruded aluminum alloy anticollision beam
[J]. Journal of Plasticity Engineering, 2023, 30 (7): 15-22.

 


[13]闫华军,邢博,张双杰,等. 基于Dynaform的前防撞梁回弹分析及模具补偿研究
[J]. 塑性工程学报, 2023, 30 (8): 35-41.

 

Yan H J, Xing B, Zhang S J,et al. Study on springback analysis and die compensation of front anticollision beam based on Dynaform
[J]. Journal of Plasticity Engineering, 2023, 30 (8): 35-41.

 


[14]Shaker W K, Klimchik A. Towards single point incremental forming accuracy: An approach for the springback effect compensation
[A].IEEE 19th International Conference on Automation Science and Engineering (CASE)
[C]. Auckland, New Zealand: IEEE, 2023.

 


[15]Choi H, Kwon Y, Cho J H, et al. Artificial intelligencebased springback compensation of EV motor component
[A].IOP Conference Series: Materials Science and Engineering
[C]. Montreal Canada: IOP Publishing, 2023.

 


[16]Marretta L, Ingarao G, Di Lorenzo R. Design of sheet stamping operations to control springback and thinning: A multiobjective stochastic optimization approach
[J]. International Journal of Mechanical Sciences, 2010, 52(7): 914-927.

 


[17]GB/T 228.1—2021. 金属材料拉伸试验第1部分:室温试验方法
[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature
[S].

 


[18]辛策. 适用于循环加载的弹塑性本构模型的建立及应用
[D]. 秦皇岛:燕山大学, 2017.

 

Xin C. Establishment and Application of Elasticplastic Constitutive Model for Cyclic Loading
[D]. Qinhuangdao: Yanshan University, 2017.

 


[19]Safaei M, Zang S, Lee M G, et al. Evaluation of anisotropic constitutive models: Mixed anisotropic hardening and nonassociated flow rule approach
[J]. International Journal of Mechanical Sciences, 2013, 73: 53-68.

 


[20]Chung K, Kuwabara T, Verma R, et al. Numisheet 2011 Benchmark 4: Prestrain effect on springback of 2D draw bending
[A].Proceedings 8th NUMISHEET Conference
[C]. Seoul, Korea:AIP Conference Proceedings,2011.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com