Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Generation mechanism of buckling defects during coiling process for thin strip steel
Authors: Wang Zhiqiang1 Wang Xingdong1 Wu Zongwu1 Xia Jiangtao2 Li Youhua3 
Unit: (1.School of Mechanical Automation  Wuhan University of Science and Technology  Wuhan 430081  China   2.Technology Center  Wuhan Iron & Steel Co. Ltd.  Wuhan 430080  China   3.Wuhan Iron & Steel Co.  Ltd.  Wuhan 430080  China) 
KeyWords: strip steel  coiling  initial plate shape  buckling coefficient transverse buckling 
ClassificationCode:TG306
year,vol(issue):pagenumber:2024,49(12):90-97
Abstract:

 Abstract: For the transverse buckling defect problems in the coiling process of thin strip steel, the dynamic simulation model of the strip coiling process was designed by finite element analysis software ABAQUS, and the coordinates of each node of strip steel in the INP file were modified to obtain the different initial plate shapes. 

 
The influence laws of initial plate shape, colling tension and the thickness of strip steel on the transverse buckring defect were analyzed. 
The results show that when the thickness of the strip steel is less than 0.2 mm, reducing the coiling tension can improve the transverse buckling defects of the strip steel with the initial plate shape of the quarter wave, composite wave and medium-wave. When the thickness of the strip steel is 0.2 mm, the strip steel with the initial plate shape of the medium wave is the least prone to produce transverse buckling when the coiling tension is 25 MPa, and the transverse buckling is increased by decreasing and increasing the coiling tension. When the coiling tension is constant, the buckling coefficient of each initial strip steel decreases with increasing of thickness, that is, increasing the thickness reduces transverse buckling. The strip steel with double-sided wavy remains at a relatively low level under different tensions and thicknesses, and no transverse buckling defects were found.
 
Funds:
基金项目:国家自然科学基金资助项目(52375117)
AuthorIntro:
作者简介:王志强(1997-),男,硕士研究生 E-mail:2439622718@qq.com 通信作者:吴宗武(1987-),男,硕士,讲师 E-mail:421123a012n.cdb@sina.cn
Reference:

 
[1]郑莲宝,徐勇,王松伟,等.水平连铸铜板坯冷轧带材表面缺陷问题研究
[J].铜业工程,2023(1):57-65.


 

Zheng L B,Xu Y,Wang S W,et al. Surface defects of cold rolled stripof horizontal continuous casting copper slab
[J].Copper Engineering,2023(1):57-65.

 


[2]刘兆洋,陈建永,刘焱.C42500铜合金铸锭热轧开坯温度对板坯质量的影响
[J].铜业工程,2023(3):108-112.

 

Liu Z Y, Chen J Y, Liu Y.Slab quality of C42500 copper alloy ingot with different hot roling temperature
[J].Copper Engineering,2023(3):108-112.

 


[3]刘华,杨荃,何安瑞.张力对大宽厚比铝箔板形的影响
[J].塑性工程学报,2005(4):62-65.

 

Liu H, Yang Q, He A R. Effect of tension on the shape of aluminum foil with large aspect ratio
[J].Journal of Plasticity Engineering,2005(4):62-65.

 


[4]刘华,吴斌,何安瑞,等.工作辊辊形对铝箔板形影响的有限元分析
[J].工程科学学报,2005(1):90-93.

 

Liu H, Wu B, He A R, et al. Finite element analysis of the influence of work roll shape on aluminum foil plate shape
[J].Chinese Journal of Engineering,2005(1):90-93.

 


[5]刘华,杨荃,何安瑞.速度对极薄铝箔轧制的影响
[J].塑性工程学报,2007(1):76-79.

 

Liu H, Yang Q, He A R. Effect of velocity on very thin aluminum foil rolling
[J].Chinese Journal of Plasticity Engineering,2007(1):76-79.

 


[6]龚殿尧,徐建忠,邸洪双,等.四重铝箔轧机工作辊辊形曲线的优化
[J].东北大学学报(自然科学版),2013,34(7):952-955.

 

Gong D Y, Xu J Z, Di H S, et al. Optimization of work roll curve of work roll in quadruple aluminum foil mill
[J].Journal of Northeastern University(Natural Science),2013,34(7):952-955.

 


[7]卿伟杰,杨荃.冷轧带钢整体和局部屈曲及后屈曲的有限元分析
[J].工程科学学报,2000(4):377-380.

 

Qing W J, Yang Q. Finite element analysis of global and local buckling and post-buckling of cold-rolled strip
[J].Chinese Journal of Engineering,2000(4):377-380.

 


[8]于海军,何安瑞,陈长科,等.铝箔清洗线卷取过程横向起皱与屈曲
[J].中国有色金属学报,2021,31(3):546-555.

 

Yu H J, He A R, Chen C K, et al. Horizontal wrinkling and buckling during the winding process of aluminum foil cleaning line
[J]. Journal of the Chinese Society of Nonferrous Metals,2021,31(3):546-555.

 


[9]于海军,何安瑞,陈长科,等.板形和张力对铝箔卷取过程横向屈曲的影响
[J].中南大学学报(自然科学版),2020,51(10):2782-2791.

 

Yu H J, He A R, Chen C K, et al. Effect of plate shape and tension on lateral buckling of aluminum foil coiling process
[J].Journal of Central South University(Natural Science),2020,51(10):2782-2791.

 


[10]令狐克志,乔建军,王洋,等.带钢连退热瓢曲与初始板形关系仿真与实践
[J].钢铁,2012,47(2):58-61.

 

Linghu K Z, Qiao J J, Wang Y, et al. Simulation and practice of the relationship between strip steel with antipyretic scooping and initial plate shape
[J].Iron and Steel,2012,47(2):58-61.

 


[11]王震,赵阳,杨学林.平面薄膜结构屈曲行为的向量式有限元分析
[J].浙江大学学报(工学版),2015,49(6):1116-1122.

 

Wang Z, Zhao Y, Yang X L. Vector finite element analysis of buckling behavior of planar thin film structures
[J].Journal of Zhejiang University(Engineering Science),2015,49(6):1116-1122.

 


[12]Li M W, Liu H F, Wang X L, et al. Key techniques of automatic gauge control and profile control for aluminium strip and foil
[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(S3): 1595-1599.

 


[13]王鹏飞,张智杰,李旭,等.冷轧带材板形在线云图监控系统研究与应用
[J].中国有色金属学报,2019,29(12):2775-2784.

 

Wang P F, Zhang Z J, Li X, et al. Research and application of online cloud map monitoring system for cold-rolled strip plate shape
[J].Chinese Journal of Nonferrous Metals,2019,29(12):2775-2784.

 


[14]李志明,彭艳,于丙强,等.一种板形信号处理系统研究
[J].中南大学学报(自然科学版),2012,43(4):1299-1308.

 

Li Z M, Peng Y, Yu B Q, et al. Research on a plate shaped signal processing system
[J]. Journal of Central South University(Natural Science),2012,43(4):1299-1308.

 

 


[15]于丙强,杨利坡,高朋.冷轧带钢板形测量方法对比分析
[J].钢铁研究学报,2014,26(5):36-41.

 

Yu B Q, Yang L P, Gao P. Comparative analysis of measurement methods for plate shape of cold-rolled strip
[J].Journal of Iron and Steel Research,2014,26(5):36-41.

 

 


[16]刘艳红.连续退火生产线带钢稳定通板技术研究
[D].上海:上海交通大学,2010.

 

Liu Y H. Research on Strip Stabilized Through Plate Technology in Continuous Annealing Production Line
[D].Shanghai:Shanghai Jiao Tong University,2010.

 


[17]叶玉娟.带钢连续退火瓢曲现象的研究
[D].洛阳:河南科技大学,2009.

 

Ye Y J. Study on Continuous Annealing and Bending Phenomenon of Strip Steel
[D]. Luoyang:Henan University of Science and Technology,2009.

 


[18]张竹庆.带材冷轧过程中张应力演变规律研究
[D].秦皇岛:燕山大学,2014.

 

Zhang Z Q. Study on Tensile Stress Evolution Law in the Process of Strip Cold Rolling
[D].Qinhuangdao:Yanshan University,2014.

 


[19]白振华,石晓东,张岩岩,等.连续退火过程中带钢热瓢曲产生的机理
[J].塑性工程学报,2012,19(1):97-102.

 

Bai Z H, Shi X D, Zhang Y Y, et al. Mechanism of hot bending of strip steel during continuous annealing
[J].Journal of Plasticity Engineering,2012,19(1):97-102.

 


[20]张清东,常铁柱,戴江波.矩形薄钢板高温态横向皱曲的解析与实验研究
[J].塑性工程学报,2007(6):41-46.

 

Zhang Q D, Chang T Z, Dai J B. Analysis and experimental study of transverse wrinkle bending of rectangular thin steel plate in high temperature state
[J].Chinese Journal of Plasticity Engineering,2007(6):41-46.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com