[1]翟俊红,田德永,吴广增.LNG用低温不锈钢管道综述 [J].山东化工,2014,43(11):63-65.
Zhai J H, Tian D Y, Wu G Z. Overview of lowtemperature stainless steel pipelines for LNG [J]. Shandong Chemical Industry,2014, 43(11): 63-65.
[2]张中耀,张源麟,王莹钊,等.大型LNG项目高压厚壁不锈钢管道焊接 [J].机械制造文摘(焊接分册),2022,299(3):44-48.
Zhang Z Y, Zhang Y L, Wang Y Z, et al. High pressure thickwall stainless steel pipe welding for large LNG projects [J]. Welding Digest of Machinery Manufacturing, 2022, 299(3): 44-48.
[3]王亚军,王儒文,贺启林,等.0Cr18Ni9不锈钢材料常低温断裂行为研究 [J].低温工程,2018,221(1):24-30,56.
Wang Y J, Wang R W, He Q L, et al. Investigation on fracture behavior of 0Cr18Ni9 austenitic stainless steel at normal and low temperatures [J]. Cryogenics, 2018, 221(1):24-30,56.
[4]尚稚轩,朱磊,樊科社,等.低温装备用铝/不锈钢复合连接件性能研究 [J].材料开发与应用,2022,37(2):80-84.
Shang Z X, Zhu L, Fan K S, et al. Study on performance of aluminum/stainless steel composite connector for cryogenic equipment [J]. Development and Application of Materials, 2022, 37(2): 80-84.
[5]宋明大,曹怀祥,袁涛,等.不锈钢液态氯化氢储罐失效分析 [A].中国机械工程学会理化检验分会,中国机械工程学会失效分析分会.2013年全国失效分析学术会议论文集 [C].大连,2013.
Song M D, Cao H X, Yuan T, et al. Failure analysis of stainless steel liquid chlorine storage tank [A]. Physical Testing and Chemical Analysis Institution of CMES, Chinese Failure Analysis Institution of CMES, Proceedings of the 2013 National Conference on Failure Analysis [C]. Dalian, 2013.
[6]Spencer K, Embury J D, Conlon K T, et al. Strengthening via the formation of straininduced martensite in stainless steels [J]. Materials Science and Engineering:A, 2004,387-389(12):873-881.
[7]Han W T, Liu Y C, Wan F R, et al. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures [J]. Journal of Nuclear Materials, 2018, 504:29-32.
[8]Zheng C S, Yu W W. Effect of lowtemperature on mechanical behavior for an AISI 304 austenitic stainless steel [J]. Materials Science and Engineering:A, 2018, 710: 359-365.
[9]Qiu Y N, Yang H. Research progress of cryogenic materials for storage and transportation of liquid hydrogen [J]. MetalsOpen Access Metallurgy Journal, 2021,11(7): 1101-1101.
[10]李欣,马涛,曹玉鹏,等.TWIP钢层错能及机理的研究进展 [J].热加工工艺,2019,48(16):13-17.
Li X, Ma T, Cao Y P, et al. Research progress of stacking fault energy and mechanism of TWIP steel [J]. Hot Working Technology,2019, 48(16): 13-17.
[11]Mallick P, Tewary N K, Ghosh S K, et al. Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel [J]. Materials Characterization, 2017, 133: 77-86.
[12]Xu D M, Wan X L, Yu J X, et al. Effect of strain rate on microstructures and mechanical properties of Fe-18Cr-8Ni steel [J]. Materials Science and Technology, 2019, 35(2): 195-203.
[13]陈亚. FeMnAlSi系TRIP/TWIP钢抗疲劳和抗冲击性能的研究 [D].长沙:湖南大学,2015.
Chen Y. Researches on Fatigue Properties and Impact Resistance Ability of FeMnAlSi TRIP/TWIP Steel [D]. Changsha:Hunan University, 2015.
[14]冯新畅,刘希月,白书欣,等.TRIP/TWIP钢的动态力学行为研究综述 [A].天津大学,天津市钢结构学会.第二十二届全国现代结构工程学术研讨会论文集 [C]. 徐州, 2022.
Fen X C, Liu X Y, Bai S X, et al. Review on dynamic mechanical behavior of TRIP/TWIP steel [A]. Tianjin University, Tianjin Steel Structure Scociety. The 22nd National Symposium on Modern Structural Engineering [C]. Xuzhou: Engineering Mechanics, 2022.
[15]景财年,王作成. TRIP-相变诱发塑性钢的研究进展 [J].特殊钢,2004(4):1-5.
Jing C N, Wang Z C. A review TRIP-phase transformationinduced plasticity steel [J]. Special Steel, 2004 (4): 1-5.
[16]Huang C X, Yang G, Gao Y L, et al. Investigation on the nucleation mechanism of deformationinduced martensite in an austenitic stainless steel under severe plastic deformation [J]. Journal of Materials Research, 2007, 22(3): 724-729.
[17]夏昊.TWIP/TRIP钢微观组织演变与加工硬化行为研究 [D].天津:河北工业大学,2018.
Xia H. Study on the Microstructure Evolution and Work Hardening Behavior of TWIP/TRIP Steels [D]. Tianjin:Hebei University of Technology, 2018.
[18]Lee S, Estrin Y, Cooman B C D. Effect of the strain rate on the TRIPTWIP transition in austenitic Fe-12Mn-0.6C TWIP steel [J]. Metallurgical and Materials Transactions A,2014,45(2): 717-730.
[19]林超.FeMnSiAl孪晶诱导塑性钢在动态加载条件下的变形机制和组织性能研究 [D].重庆:西南交通大学,2018.
Lin C. Investigations on Deformation Mechanism and Microstructuremechanical Property of FeMnSiAl TWIP Steels under Dynamic Loading Conditions [D]. Chongqing: Southwest Jiaotong University, 2018.
[20]张哲峰,李克强,蔡拓,等.层错能对面心立方金属形变机制与力学性能的影响 [J].金属学报,2023,59(4):467-477.
Zhang Z F, Li K Q, Cai T, et al. Effects of stacking fault energy on the deformation mechanisms and mechanical properties of facecentered cubic metals [J]. Acta Mtallurgica Sinica, 2023, 59(4): 467-477.
[21]Park W S, Yoo S W, Kim M H, et al. Strainrate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments [J]. Materials and Design, 2010, 31(8): 3630-3640.
[22]刘伟,李志斌,王翔,等.应变速率对奥氏体不锈钢应变诱发α′-马氏体转变和力学行为的影响 [J].金属学报,2009,45(3):285-291.
Liu W, Li Z B, Wang X, et al. Effect of strain rate on strain induced α′-martensite transformation and mechanical response of austenitic stainless steels [J]. Acta Metallurgica Sinica, 2009, 45(3): 285-291.
[23]Jian P, Li K, Qiao D, et al. Mechanical properties of prestrained austenitic stainless steel from the view of energy density [J]. Results in Physics, 2018, 10: 187-193.
[24]Li J, Zhou Z, Wang S, et al. Deformation mechanisms and enhanced mechanical properties of 304L stainless steel at liquid nitrogen temperature [J]. Materials Science and Engineering:A, 2020, 798: 140133.
[25]Kim J H, Park W S, Chun M S, et al. Effect of prestraining on lowtemperature mechanical behavior of AISI 304L [J]. Materials Science and Engineering:A, 2012, 543: 50-57.
[26]Toppo V, Singh S B, Ray K K. Wear resistance of annealed plain carbon steels in prestrained condition [J]. Wear, 2009, 266(9): 907-916.
[27]Cheng W J, Cui D D, Sun Y N, et al. Cryogenic workhardening behavior for a metastable austenitic stainless steel at liquid nitrogen temperature [J]. Materials Science and Engineering:A, 2022, 861: 144352.
[28]Cheng W J, Liu W, Yuan S J. Deformation behavior of AlCuMn alloy sheets under biaxial stress at cryogenic temperatures [J]. Materials Science and Engineering A, 2019, 759: 357-367.
[29]李会鹏,熊毅,路妍,等.应变速率对低温拉伸 316LN 奥氏体不锈钢微观组织和力学性能的影响 [J].材料研究学报,2018,32(2):105-111.
Li H P, Xiong Y, Lu Y, et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature [J]. Chinese Journal of Materials Research, 2018, 32(2): 105-111.
[30]Li X F, Chen J, Ye L Y, et al. Influence of strain rate on tensile characteristics of SUS304 metastable austenitic stainless steel [J]. Acta Metallurgica Sinica, 2013, 26(6): 657-662.
[31]Ferreira P J, Vander S J B, Amaral F M, et al. Microstructure development during highvelocity deformation [J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3091.
[32]陈路飞,熊毅,李会鹏,等.不同温度下 316LN 奥氏体不锈钢拉伸变形后的组织演变与性能 [J].材料热处理学报,2016,37(10):131-137.
Chen L F, Xiong Y, Li H P, et al. Microstructure evolution and mechanical properties of 316LN austenitic stainless steel after tensile deformation at different temperatures [J]. Transactions of Materials and Heat Treatment, 2016, 37(10): 131-137.
[33]Wu S S, Xin J J, Xie W, et al. Mechanical properties and microstructure evolution of cryogenic prestrained 316LN stainless steel [J]. Cryogenics, 2022, 121: 103388.
[34]Quitzke C, Schroder C, Ullrich C, et al. Evaluation of straininduced martensite formation and mechanical properties in Nalloyed austenitic stainless steels by in situ tensile tests [J]. Materials Science and Engineering:A, 2021, 808: 140930.
[35]Mangonon P L, Thomas G. Structure and properties of thermalmechanically treated 304 stainless steels [J]. Metallurgical Transactions, 1970, 1: 1587-1594.
[36]Mangonon P L, Thomas G. Martensite phases in 304 stainless steel [J]. Metallurgical Transactions,1970, 1: 1577-1586.
[37]Zebing X, Roven H J, Jia Z H. Mechanical properties and surface characteristics of an AA6060 alloy strained in tension at cryogenic and room temperature [J]. Materials Science and Engineering:A, 2015, 648: 350-358.
[38]Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Materials Science and Engineering: A, 2012, 552: 514-522.
[39]Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels [J]. Acta Materialia, 2011, 59(3): 1068-1076.
|