Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Ultralow temperature deformationinducing strengthening mechanism of austenitic stainless steel
Authors: Cheng Wangjun1  Cui Dongdong1  Sun Yaoning1  Gulimire·Abulizi1  Liu Wei2 
Unit: (1. School of Mechanical Engineering  Xinjiang University  Urumqi 830017  China 2. National Key Laboratory for Precision Hot  Processing of Metals  Harbin Institute of Technology  Harbin 150001  China) 
KeyWords: ultra-low temperature  austenitic stainless steel  strengthening mechanism  martensitic transformation  dislocation slip 
ClassificationCode:TG142.25
year,vol(issue):pagenumber:2024,49(12):208-216
Abstract:

 Abstract: Austenitic stainless steels has poor mechanical properties at room temperature, but its properties are significantly strengthened during deformation at ultra-low temperatures. Therefore, for the deformation-inducing strengthening characteristics of austenitic stainless steel at ultra-low temperatures, three deformation mechanisms, namely phase transition induced plasticity, twinning induced plasticity and dislocation slip, were reviewed and analyzed, and the influences of strain rate, pre-strain amount and deformation amount on the mechanical properties of stainless steel at ultra-low temperatures were elucidated. Then, the microstructure evolution of stainless steel during low temperature deformation process under different parameters was revealed, and the intrinsic relationships of dislocation slip, mechanical twinning and martensitic transformation with plastic deformation process were analyzed. Furthermore, the nucleation and evolution of ductile dimple at the fracture were clarified, and their impact on the ductility of stainless steel was explained. Finally, the phase transformation strengthening mechanism of stainless steel at low temperature was analyzed. By introducing the ultra-low temperature deformation-inducing strengthening mechanism of austenitic stainless steel from the macro and micro perspectives, a reference is provided for the safe service and high performance manufacturing of stainless steel under extreme working conditions.

 
Funds:
基金项目:国家自然科学基金资助项目 (52365052);新疆维吾尔自治区自然科学基金资助项目 (2022D01C653);中国博士后科学基金面上资助项目 (2022M722666);哈尔滨工业大学横向项目(202207140009)
AuthorIntro:
作者简介:程旺军(1987-),男,博士,副教授 E-mail:chengwangjun2008@126.com
Reference:

 
[1]翟俊红,田德永,吴广增.LNG用低温不锈钢管道综述
[J].山东化工,2014,43(11):63-65.


 

Zhai J H, Tian D Y, Wu G Z. Overview of lowtemperature stainless steel pipelines for LNG
[J]. Shandong Chemical Industry,2014, 43(11): 63-65.

 


[2]张中耀,张源麟,王莹钊,等.大型LNG项目高压厚壁不锈钢管道焊接
[J].机械制造文摘(焊接分册),2022,299(3):44-48.

 

Zhang Z Y, Zhang Y L, Wang Y Z, et al. High pressure thickwall stainless steel pipe welding for large LNG projects
[J]. Welding Digest of Machinery Manufacturing, 2022, 299(3): 44-48.

 


[3]王亚军,王儒文,贺启林,等.0Cr18Ni9不锈钢材料常低温断裂行为研究
[J].低温工程,2018,221(1):24-30,56.

 

Wang Y J, Wang R W, He Q L, et al. Investigation on fracture behavior of 0Cr18Ni9 austenitic stainless steel at normal and low temperatures
[J]. Cryogenics, 2018, 221(1):24-30,56.

 


[4]尚稚轩,朱磊,樊科社,等.低温装备用铝/不锈钢复合连接件性能研究
[J].材料开发与应用,2022,37(2):80-84.

 

Shang Z X, Zhu L, Fan K S, et al. Study on performance of aluminum/stainless steel composite connector for cryogenic equipment
[J]. Development and Application of Materials, 2022, 37(2): 80-84.

 


[5]宋明大,曹怀祥,袁涛,等.不锈钢液态氯化氢储罐失效分析
[A].中国机械工程学会理化检验分会,中国机械工程学会失效分析分会.2013年全国失效分析学术会议论文集
[C].大连,2013. 

 

Song M D, Cao H X, Yuan T, et al. Failure analysis of stainless steel liquid chlorine storage tank
[A]. Physical Testing and Chemical Analysis Institution of CMES, Chinese Failure Analysis Institution of CMES, Proceedings of the 2013 National Conference on Failure Analysis
[C]. Dalian, 2013.

 


[6]Spencer K, Embury J D, Conlon K T, et al. Strengthening via the formation of straininduced martensite in stainless steels
[J]. Materials Science and Engineering:A, 2004,387-389(12):873-881.

 


[7]Han W T, Liu Y C, Wan F R, et al. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures
[J]. Journal of Nuclear Materials, 2018, 504:29-32.

 


[8]Zheng C S, Yu W W. Effect of lowtemperature on mechanical behavior for an AISI 304 austenitic stainless steel
[J]. Materials Science and Engineering:A, 2018, 710: 359-365.

 


[9]Qiu Y N, Yang H. Research progress of cryogenic materials for storage and transportation of liquid hydrogen
[J]. MetalsOpen Access Metallurgy Journal, 2021,11(7): 1101-1101.

 


[10]李欣,马涛,曹玉鹏,等.TWIP钢层错能及机理的研究进展
[J].热加工工艺,2019,48(16):13-17.

 

Li X, Ma T, Cao Y P, et al. Research progress of stacking fault energy and mechanism of TWIP steel
[J]. Hot Working Technology,2019, 48(16): 13-17.

 


[11]Mallick P, Tewary N K, Ghosh S K, et al. Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel
[J]. Materials Characterization, 2017, 133: 77-86.

 


[12]Xu D M, Wan X L, Yu J X, et al. Effect of strain rate on microstructures and mechanical properties of Fe-18Cr-8Ni steel
[J]. Materials Science and Technology, 2019, 35(2): 195-203.

 


[13]陈亚. FeMnAlSi系TRIP/TWIP钢抗疲劳和抗冲击性能的研究
[D].长沙:湖南大学,2015.

 

Chen Y. Researches on Fatigue Properties and Impact Resistance Ability of FeMnAlSi TRIP/TWIP Steel
[D]. Changsha:Hunan University, 2015.

 


[14]冯新畅,刘希月,白书欣,等.TRIP/TWIP钢的动态力学行为研究综述
[A].天津大学,天津市钢结构学会.第二十二届全国现代结构工程学术研讨会论文集
[C]. 徐州, 2022.

 

Fen X C, Liu X Y, Bai S X, et al. Review on dynamic mechanical behavior of TRIP/TWIP steel
[A]. Tianjin University, Tianjin Steel Structure Scociety. The 22nd National Symposium on Modern Structural Engineering
[C]. Xuzhou: Engineering Mechanics, 2022. 

 


[15]景财年,王作成. TRIP-相变诱发塑性钢的研究进展
[J].特殊钢,2004(4):1-5.

 

Jing C N, Wang Z C. A review TRIP-phase transformationinduced plasticity steel
[J]. Special Steel, 2004 (4): 1-5.

 


[16]Huang C X, Yang G, Gao Y L, et al. Investigation on the nucleation mechanism of deformationinduced martensite in an austenitic stainless steel under severe plastic deformation
[J]. Journal of Materials Research, 2007, 22(3): 724-729.

 


[17]夏昊.TWIP/TRIP钢微观组织演变与加工硬化行为研究
[D].天津:河北工业大学,2018.

 

Xia H. Study on the Microstructure Evolution and Work Hardening Behavior of TWIP/TRIP Steels
[D]. Tianjin:Hebei University of Technology, 2018.

 


[18]Lee S, Estrin Y, Cooman B C D. Effect of the strain rate on the TRIPTWIP transition in austenitic Fe-12Mn-0.6C TWIP steel
[J]. Metallurgical and Materials Transactions A,2014,45(2): 717-730.

 


[19]林超.FeMnSiAl孪晶诱导塑性钢在动态加载条件下的变形机制和组织性能研究
[D].重庆:西南交通大学,2018.

 

Lin C. Investigations on Deformation Mechanism and Microstructuremechanical Property of FeMnSiAl TWIP Steels under Dynamic Loading Conditions
[D]. Chongqing: Southwest Jiaotong University, 2018.

 


[20]张哲峰,李克强,蔡拓,等.层错能对面心立方金属形变机制与力学性能的影响
[J].金属学报,2023,59(4):467-477.

 

Zhang Z F, Li K Q, Cai T, et al. Effects of stacking fault energy on the deformation mechanisms and mechanical properties of facecentered cubic metals
[J]. Acta Mtallurgica Sinica, 2023, 59(4): 467-477.

 


[21]Park W S, Yoo S W, Kim M H, et al. Strainrate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments
[J]. Materials and Design, 2010, 31(8): 3630-3640.

 


[22]刘伟,李志斌,王翔,等.应变速率对奥氏体不锈钢应变诱发α′-马氏体转变和力学行为的影响
[J].金属学报,2009,45(3):285-291.

 

Liu W, Li Z B, Wang X, et al. Effect of strain rate on strain induced α′-martensite transformation and mechanical response of austenitic stainless steels
[J]. Acta Metallurgica Sinica, 2009, 45(3): 285-291.

 


[23]Jian P, Li K, Qiao D, et al. Mechanical properties of prestrained austenitic stainless steel from the view of energy density
[J]. Results in Physics, 2018, 10: 187-193.

 


[24]Li J, Zhou Z, Wang S, et al. Deformation mechanisms and enhanced mechanical properties of 304L stainless steel at liquid nitrogen temperature
[J]. Materials Science and Engineering:A, 2020, 798: 140133.

 


[25]Kim J H, Park W S, Chun M S, et al. Effect of prestraining on lowtemperature mechanical behavior of AISI 304L
[J]. Materials Science and Engineering:A, 2012, 543: 50-57.

 


[26]Toppo V, Singh S B, Ray K K. Wear resistance of annealed plain carbon steels in prestrained condition
[J]. Wear, 2009, 266(9): 907-916.

 


[27]Cheng W J, Cui D D, Sun Y N, et al. Cryogenic workhardening behavior for a metastable austenitic stainless steel at liquid nitrogen temperature
[J]. Materials Science and Engineering:A, 2022, 861: 144352.

 


[28]Cheng W J, Liu W, Yuan S J. Deformation behavior of AlCuMn alloy sheets under biaxial stress at cryogenic temperatures
[J]. Materials Science and Engineering A, 2019, 759: 357-367.

 

 


[29]李会鹏,熊毅,路妍,等.应变速率对低温拉伸 316LN 奥氏体不锈钢微观组织和力学性能的影响
[J].材料研究学报,2018,32(2):105-111.

 

Li H P, Xiong Y, Lu Y, et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature
[J]. Chinese Journal of Materials Research, 2018, 32(2): 105-111.

 


[30]Li X F, Chen J, Ye L Y, et al. Influence of strain rate on tensile characteristics of SUS304 metastable austenitic stainless steel
[J]. Acta Metallurgica Sinica, 2013, 26(6): 657-662.

 


[31]Ferreira P J, Vander S J B, Amaral F M, et al. Microstructure development during highvelocity deformation
[J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3091.

 


[32]陈路飞,熊毅,李会鹏,等.不同温度下 316LN 奥氏体不锈钢拉伸变形后的组织演变与性能
[J].材料热处理学报,2016,37(10):131-137.

 

Chen L F, Xiong Y, Li H P, et al. Microstructure evolution and mechanical properties of 316LN austenitic stainless steel after tensile deformation at different temperatures
[J]. Transactions of Materials and Heat Treatment, 2016, 37(10): 131-137.

 


[33]Wu S S, Xin J J, Xie W, et al. Mechanical properties and microstructure evolution of cryogenic prestrained 316LN stainless steel
[J]. Cryogenics, 2022, 121: 103388.

 


[34]Quitzke C, Schroder C, Ullrich C, et al. Evaluation of straininduced martensite formation and mechanical properties in Nalloyed austenitic stainless steels by in situ tensile tests
[J]. Materials Science and Engineering:A, 2021, 808: 140930.

 


[35]Mangonon P L, Thomas G. Structure and properties of thermalmechanically treated 304 stainless steels
[J]. Metallurgical Transactions, 1970, 1: 1587-1594.

 


[36]Mangonon P L, Thomas G. Martensite phases in 304 stainless steel
[J]. Metallurgical Transactions,1970, 1: 1577-1586.

 


[37]Zebing X, Roven H J, Jia Z H. Mechanical properties and surface characteristics of an AA6060 alloy strained in tension at cryogenic and room temperature
[J]. Materials Science and Engineering:A, 2015, 648: 350-358.

 


[38]Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel
[J]. Materials Science and Engineering: A, 2012, 552: 514-522.

 


[39]Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels
[J]. Acta Materialia, 2011, 59(3): 1068-1076.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com