[1]黄淑萍, 黄亮, 陈绍文, 等. 退火温度对5456铝合金冷轧板材组织与性能的影响 [J]. 金属热处理, 2019, 44(8): 196-199.
Huang S P, Huang L, Chen S W, et al. Effects of annealing temperature on microstructure and mechanical properties of 5456 aluminum alloy cold rolled sheet [J]. Heat Treatment of Metals, 2019, 44(8): 196-199.
[2]房洪杰, 刘慧, 孙杰, 等. 5xxx系铝合金研究现状及发展趋势 [J]. 材料导报, 2023, 37(21): 211-220.
Fang H J, Liu H, Sun J, et al. Research status and development trend of 5xxx series aluminum alloy [J]. Materials Reports, 2023, 37(21): 211-220.
[3]刘昭昭, 王淼, 刘延辉. 镍基高温合金GH4133B本构模型及热加工图的热模拟研究 [J]. 航空材料学报, 2021, 41(6): 44-50.
Liu Z Z, Wang M, Liu Y H. Analysis of deformation behavior and microstructure evolution for GH4133B superalloy based on isothermal compression test [J]. Journal of Aeronautical Materials, 2021, 41(6): 44-50.
[4]李娜. 镍基高温合金热变形行为及热加工性能研究 [D].重庆:重庆大学,2021.
Li N. Study on Hot Deformation Behavior and Hot Workability of Nickelbased Superalloy [D]. Chongqing:Chongqing University, 2021.
[5]郭乐乐, 陈学文, 周旭东, 等. 基于原位观测的Cr5合金钢HanselSpittel高温本构模型修正方法及试验验证 [J]. 塑性工程学报, 2021, 28(6): 88-95.
Guo L L, Chen X W, Zhou X D, et al. Correction method and experimental verification of HanselSpittel constitutive model of Cr5 alloy steel at high temperature based on insitu observation [J]. Journal of Plasticity Engineering, 2021, 28(6):88-95.
[6]尹小燕, 骆静, 朱杰. 基于HanselSpittel模型的齿环用HAl61-4-3-1合金本构模型构建 [J].重庆理工大学学报(自然科学), 2021, 35(1):111-117,167.
Yin X Y, Luo J, Zhu J. Construction of hightemperature constitutive model of HAl61-4-3-1 alloy for synchronizer ring based on HanselSpittel mode [J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(1):111-117,167.
[7]Senthilkumar V,Balaji A,Arulkirubakaran D. Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1737-1750.
[8]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics,1983,21:541-547.
[9]林木森, 庞宝君, 张伟, 等. 5A06铝合金的动态本构关系实验 [J]. 爆炸与冲击, 2009, 29(3): 306-311.
Lin M S, Pang B J, Zhang W, et al. Experimental investigation on a dynamic constitutive relationship of 5A06 alloy [J]. Explosion and Shock Waves, 2009, 29(3): 306-311.
[10]张晓蕾,陈思达,王子健.5052铝合金本构模型和断裂模型研究 [J].模具工业,2024,50(8):27-35.
Zhang X L, Chen S D, Wang Z J. Study on constitutive model and fracture model of 5052 aluminum alloy [J]. Die & Mould Industry, 2024,50(8):27-35.
[11]毕宝鹏, 王勇, 孙梦莹. 5A06铝合金超塑性变形力学特性 [J]. 塑性工程学报, 2015, 22(2): 62-67.
Bi B P, Wang Y, Sun M Y. Mechanical behavior of aluminum alloy 5A06 under superplastic deform [J]. Journal of Plasticity Engineering, 2015, 22(2): 62-67.
[12]李彦斌, 何珞玉, 李国钧, 等. 5A06铝合金高精度唯象本构模型的快速构建 [J]. 塑性工程学报, 2023, 30(7): 127-137.
Li Y B, He L Y, Li G J, et al. Rapid construction of high precision phenomenological constitutive model for 5A06 aluminum alloy [J]. Journal of Plasticity Engineering, 2023, 30(7): 127-137.
[13]Wang J, Xiao G Q, Zhang J S. A new constitutive model and hot processing map of 5A06 aluminum alloy based on hightemperature rheological behavior and higherorder gradients [J]. Materials Today Communications, 2023, 36: 106502.
[14]朱振华. 5A30铝合金高温压缩变形行为的研究 [D].广州:广东工业大学,2011.
Zhu Z H. Study on the Compression Deformation Behaviors of 5A30 Aluminum Alloy at Elevated Temperature [D].Guangzhou:Guangdong University of Technology, 2011.
|