Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation study on formability of TA1/2A12 composite plates
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG389
year,vol(issue):pagenumber:2025,50(1):74-82
Abstract:

 The bulging test of TA1/2A12 composite plates with different placement sequence was simulated by finite element software Dynaform. Then, the ultimate bulging height of TA1/2A12 composite plates, the distribution conditions of strain and thinning rate of each layer of plates were analyzed which were verified by bulging test. The simulation results show that when the titanium layer and aluminum layer are placed close to the punch, the ultimate bulging heights are 33.9 and 32.0 mm, respectively. The stress near the bottom of titanium layer hemisphere is high, and the strain along TD direction is larger. The stress on the aluminum layer is small and evenly distributed, so the ultimate strain is reached firstly at the position of titanium layer near the bottom of hemisphere. Under the bonding effect of composite plates, the strain on the corresponding position of aluminum layer increases until it breaks. The bulging tests show that when the titanium layer and the aluminum layer are respectively close to the position of punch, the ultimate bulging height is 35.7 and 33.6 mm, respectively, and the errors between finite element simulation and test in the ultimate bugling height are 5.3% and 5.0%, respectively. The simulation is in good agreement with the actual fracture situation, and the formability of titanium/aluminum composite plates can be accurately predicted by the established finite element model.

Funds:
国家自然科学基金资助项目(52275362,51904205);山西省基础研究计划优秀青年培育项目(202203021224003);中央引导地方科技发展资金资助项目(YDZJSX2021A020,YDZX20191400002149);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(HXKT2023133,2023HA-TYUTKFYF038)
AuthorIntro:
作者简介:高利涛(1998-),男,硕士研究生 E-mail:1450789083@qq.com 通信作者:韩建超(1989-),男,博士,教授 E-mail:hanjianchao@tyut.edu.cn
Reference:

 [1]  马志新,胡捷,李德富,等.层状金属复合板的研究和生产现状[J].稀有金属,2003,27(6):799-803.


Ma Z X, Hu J, Li D F, et al. Overview of research and manufacture of layer-metal composite plate[J]. Chinese Journal of Rare Metals, 2003, 27(6):799-803.

 

[2]  蔡菊生.先进复合材料在航空航天领域的应用[J].合成材料老化与应用,2018,47(6):94-97. 

Cai J S. Application of advanced composite materials in aerospace[J]. Synthetic Materials Aging and Application, 2018, 47(6): 94-97.

 

[3]  王文焱,史士钦,尚郑平,等.铸轧法制备钛/铝复合板的界面组织与性能[J].特种铸造及有色合金,2016,36(10):1084-1088.

Wang W Y, Shi S Q, Shang Z P, et al. Interfacial microstructure and properties of Ti-Al rolling-casted composite plate[J]. Special Casting & Nonferrous Alloys, 2016, 36(10): 1084-1088.

 

[4]  Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy[J]. Journal of Materials Science & Technology, 2018, 34(5): 788-792.

 

[5]  韩建超,刘畅,贾燚,等.钛/铝复合板研究进展[J].中国有色金属学报,2020,30(6):1270-1280.

Han J C, Liu C, Jia Y, et al. Research progress on titanium/aluminum composite plate[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1270-1280.

 

[6]  夏琴香,熊盛勇,邝乃强,等.不锈钢/铝/不锈钢复合板的力学及拉深成形性能[J].华南理工大学学报(自然科学版),2016,44(12):1-6.

Xia Q X, Xiong S Y, Kuang N Q, et al. Investigation into mechanical and deep drawing properties of stainless steel aluminum/stainless steel-laminated sheet[J]. Journal of South China University of Technology(Natural Science Edition), 2016, 44(12): 1-6.

 

[7]  Karajibani E, Fazli A, Hashemi R. Numerical and experimental study of formability in deep drawing of two-layer metallic sheets[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80: 113-121. 

 

[8]  朱晶,杜坤,贾维平,等.5052 铝合金板材室温冲压成形性能研究[J].热加工工艺,2015,44(19):1-4.

Zhu J, Du K, Jia W P, et al. Research on stamping formability of 5052 aluminum alloy sheet at room temperature[J]. Hot Working Technology, 2015,44(19):1-4.

 

[9]  Morovvati M R, Fatemi A, Sadighi M. Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheet metals in deep drawing process[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54: 113-121.

 

[10]万志远. 轿车后地板成形工艺及修边冲孔模具设计[J]. 锻压技术, 2024, 49(2):71-76.

Wan Z Y. Forming process and trimming-punching die design of car rear floor[J]. Forging & Stamping Technology, 2024, 49(2):71-76.

 

[11]Mola R, Mroz S, Szota P. Effects of the process parameters on the formability of the intermetallic zone in two-layer Mg/Al materials[J]. Archives of Civil and Mechanical Engineering, 2018, 18: 1401-1409.

 

[12]王康康,陈泽中,江楠森,等.基于GA-BP的汽车行李箱盖内板冲压成形工艺优化[J].塑性工程学报,2021,28(9):28-34.

Wang K K, Chen Z Z, Jiang N S, et al. Process optimization of stamping forming for inner panel of car trunk lid based on GA-BP[J]. Journal of Plasticity Engineering, 2021,28(9):28-34.

 

[13]闫华军,邢博,张双杰,等.基于Dynaform的前防撞梁回弹分析及模具补偿研究[J].塑性工程学报,2023,30(8):35-41.

Yan H J, Xing B, Zhang S J, et al. Study on springback analysis and die compensation of front anti-collision beam based on Dynaform[J]. Journal of Plasticity Engineering, 2023, 30(8): 35-41.

 

[14]Gao T H, Liang Y, Hu P, et al. Investigation on mechanical behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test: Experimental trials, numerical analysis[J]. Journal of Manufacturing Processes, 2020, 50: 1-16.

 

[15]孙庆东,张翔,张军,等.基于Dynaform和正交试验的汽车后备箱拉延工艺优化[J].现代制造工程,2022(8):60-64.

Sun Q D, Zhang X, Zhang J, et al. Optimization of drawing process of automobile trunk based on Dynaform and orthogonal test[J]. Modern Manufacturing Engineering, 2022(8): 60-64.

 

[16]鲜小红,杨柳,刘欢,等.基于Dynaform的新能源地库车顶盖冲压拉深内、外拉延筋间距的数字化设计技术[J].锻压技术,2023,48(6):50-60.

Xian X H, Yang L, Liu H, et al. Digital design technology for inner and outer drawbead spacing in stamping and drawing for roof cover of new energy underground parking garage vehicle based on Dynaform[J]. Forging & Stamping Technology, 2023, 48(6): 50-60.

 

[17]Tseng H C, Hung C, Huang C C. An analysis of the formability of aluminum/copper clad metals with different thicknesses by the finite element method and experiment[J]. The International Journal of Advanced Manufacturing Technology, 2010, 49: 1029-1036.

 

[18]Atrian A, Fereshteh-Saniee F. Deep drawing process of steel/brass laminated sheets[J]. Composites Part B: Engineering, 2013, 47: 75-81.

 

[19]Lu R H, Liu Y T, Yan M, et al. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding[J]. Journal of Materials Processing Technology, 2021, 297(1): 117246.

 

[20]印雄飞,何丹农,叶又,等.虚拟速度对板料成形数值模拟影响的实验研究[J].机械科学与技术,2000(3):452-453.

Yin X F, He D N, Ye Y, et al. Experimental study on the influence of virtue speed on numerical simulation in sheet forming[J]. Mechanical Science and Technology for Aerospace Engineering, 2000(3): 452-453.

 

[21]GB/T 15825.3—2008,金属薄板成形性能与试验方法  第3部分:拉深与拉深载荷试验[S].

GB/T 15825.3—2008,Sheet metal formability and test methods—Part 3: Drawing and drawing load test [S].
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com