[1] 陆子川, 张绪虎, 微石, 等. 航天用钛合金及其精密成形技术研究进展[J]. 宇航材料工艺, 2020, 50(4): 1-7.
Lu Z C, Zhang X H, Wei S, et al. Research progresses of titanium alloys and relevant precision forming technology for the aerospace industry[J]. Aerospace Materials & Technology, 2020, 50(4): 1-7.
[2] Kumar P, Prakash O, Ramamurty U. Micro- and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V[J]. Acta Materialia, 2018, 154: 246-260.
[3] 张新, 刘鸿羽, 车昶, 等. 钛合金低成本成形技术研究进展[J]. 铸造, 2021, 70(10): 1141-1148.
Zhang X, Liu H Y, Che C, et al. Development status of low cost titanium alloy processing technology[J]. Foundry, 2021, 70(10): 1141-1148.
[4] Bodunrin M O, Chown L H. Towards the development of experimental (α+β) Ti-Al-V-Fe alloys[J]. Materials Today: Proceedings, 2021, 38: 663-668.
[5] 黄立国,庄伟彬,高志玉.Ti-6Al-4V-0.1B钛合金的热压缩变形行为[J].稀有金属,2023,47(4):512-519.
Huang L G, Zhuang W B, Gao Z Y. Compression deformation behavior of Ti-6Al-4V-0.1B titanium alloy at elevated temperature [J]. Chinese Journal of Rare Metals, 2023, 47(4): 512-519.
[6] 王亮, 颜卉, 姜博涛, 等. Fe代替V制备低成本钛合金的组织与性能[J]. 特种铸造及有色合金, 2022, 42(5): 535-539.
Wang L, Yan H, Jiang B T,et al. Microstructure and mechanical properties of the low cost titanium alloy with substitute of Fe for V[J]. Special Casting & Nonferrous Alloys, 2022, 42(5): 535-539.
[7] 骆良顺, 王富鑫, 吴晓明, 等. 低成本Ti-Al-V-Fe-O合金热变形行为及热加工图[J]. 稀有金属材料与工程, 2018, 47: 2049-2055.
Luo L S, Wang F X, Wu X M, et al, Hot deformation and processing maps of low cost Ti-Al-V-Fe-O alloy[J]. Rare Metal Materials and Engineering, 2018, 47: 2049-2055.
[8] Wan G L, Ren Z H, Guo Y H, et al. The analysis of hot deformation behaviour of low-cost α+β Ti-6Al-0.4V-1.2Fe alloys[J]. Materials Science and Technology, 2023, 39(12): 1530-1542.
[9] Bodunrin M O, Chown L H, Van Der Merwe J W, et al. On the substitution of vanadium with iron in Ti-6Al-4V: Thermo-Calc simulation and processing map considerations for design of low-cost alloys[J]. Materials Science and Engineering: A, 2020, 791: 139622.
[10]Xu G H, Tao J Y, Deng Y J, et al. Multi-stage hot deformation and dynamic recrystallization behavior of low-cost Ti-Al-V-Fe alloy via electron beam cold hearth melting[J]. Journal of Materials Research and Technology, 2022, 20: 1186-1203.
[11]王俭, 冯秋元, 雷挺, 等. 退火温度对低成本TC4LCA钛合金板材组织和性能的影响[J]. 金属热处理, 2022, 47(11): 82-86.
Wang J, Feng Q Y, Lei T, et al. Effect of annealing temperature on microstructure and properties of low cost TC4LCA titanium alloy plate[J]. Heat Treatment of Metals, 2022, 47(11): 82-86.
[12]张宝, 李德崇, 曹宏东, 等. 温度变化速率对TC4钛合金热变形力学性能的影响[J]. 材料与冶金学报, 2023, 22: 495-499.
Zhang B, Li D C, Cao H D, et al, Effect of temperature change rate on the mechanical properties of TC4 titanium alloy under hot deformation[J]. Journal of Materials and Metallurgy, 2023, 22: 495-499.
[13]杜舜尧, 陈明和, 谢兰生, 等. Ti6Al4V合金的高温短时蠕变本构关系与应力松弛行为[J]. 中国有色金属学报, 2015, 25(12): 3344-3351.
Du S Y, Chen M H, Xie L S, et al. Short-term creep constitutive relation and stress relaxation behavior of Ti6Al4V alloy at high temperature[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(12): 3344-3351.
[14]郭文平, 施立军, 曹江, 等. Ti6Al4V钛合金盒形件热拉深成形[J]. 锻压技术, 2023, 48(12): 87-93.
Guo W P, Shi L J, Cao J, et al, Hot drawing on Ti6Al4V titanium alloy box-shaped parts[J]. Forging & Stamping Technology, 2023, 48(12): 87-93.
|