[1] 顾波,王娇,白晶.基于热连轧机厚度精度的最优控制研究[J].机床与液压,2018,46(8): 126-128.
Gu B,Wang J,Bai J.Optimal control of thickness accuracy of hot rolling mill[J].Machine Tool & Hydraulic,2018,46(8): 126-128.
[2] Wang Z H,Zhang D H,Gong D Y,et al.A new data-driven roll force and roll torque model based on FEM and hybrid PSO-ELM for hot strip rolling[J].ISIJ International,2019,59(9):1604-1613.
[3] Liu X,Liu X H,Song M,et al. Theoretical analysis of minimum metal foil thickness achievable by asymmetric rolling with fixed identical roll diameters [J]. Transactions of Nonferrous Metals Society of China,2016,26(2):501-507.
[4] 王春华,吕雷.改进型支持向量回归预测模型的轧机轧制力预测[J].传感器与微系统,2017,36(4):65-67,70.
Wang C H, Lyu L. Rolling force prediction of rolling mill based on improved support vector regression prediction model [J]. Transducer and Microsystem Technologies, 2017, 36(4): 65-67, 70.
[5] 贺庆强,张勤河,张海龙.应用综合仿真模型构建H型钢轧制力公式[J].重型机械,2008(1):6-10.
He Q Q, Zhang Q H, Zhang H L. Development of rolling force formula for H-beam rolling process by an integrated model [J]. Heavy Machinery, 2008(1): 6-10.
[6] 张海龙,张勤河,贺庆强,等.H型钢连轧过程轧制力模型的研究[J].钢铁,2009,44(4):46-49.
Zhang H L, Zhang Q H, He Q Q, et al. Study on continuous rolling force model for H-beam [J]. Iron and Steel, 2009, 44(4): 46-49.
[7] 赵景云,臧勇,逄晓男,等.基于流函数的H型钢轧制力能参数模型[J].北京科技大学学报,2013,35(1):112-119.
Zhao J Y, Zang Y, Pang X N, et al. Rolling energetic parameter model of H-beams based on the fowfunction [J]. Journal of University of Science and Technology Beijing, 2013, 35(1): 112-119.
[8] 张向军,陈志强,朱凤泉,等.一种H型钢矩形坯热轧开坯的轧制力能校核计算方法[P].中国:CN115544449A,2022-12-30.
Zhang X J, Chen Z Q, Zhu F Q, et al. A method for checking and calculating the rolling force energy of a rectangular billet hot rolling process for H-beam steel [P]. China: CN115544449A, 2022-12-30.
[9] Zhang X D,Yao L,Zhou Z X.Rolling force prediction algorithm based on Bayesian regularization neural network[A]. Proceedings of the 2nd International Conference on Electronics,Network and Computer Engineering (ICENCE 2016) [C].Paris:Atlantis Press,2016.
[10]窦博.热连轧轧制力贝叶斯神经网络预测与模型优化[J].金属制品,2017,43(6): 42-48.
Dou B.Prediction of rolling force and model optimization with Bayes neural network[J].Metal Products,2017,43(6): 42-48.
[11]Zheng G,Ge L H,Shi Y Q,et al.Dynamic rolling force prediction of reversible cold rolling mill based on BP neural network with improved PSO[A]. Proceedings of 2018 Chinese Automation Congress (CAC) [C].Xi′an:IEEE,2018.
[12]魏立新,魏新宇,孙浩,等. 基于改进遗传算法优化SVM的轧制力预报[A]. 第37届中国控制会议论文集[C]. 新泽西州皮斯卡特维: IEEE,2018.
Wei L X,Wei X Y,Sun H,et al.Rolling force prediction of SVM based on improved genetic algorithm[A].Proceedings of the 37th Chinese Control Conference[C].Piscataway NJ: IEEE,2018.
[13]马威,李维刚,赵云涛,等.基于深度学习的热连轧轧制力预测[J].钢铁研究学报,2019,31(9):805-815.
Ma W,Li W G,Zhao Y T,et al.Prediction of hot-rolled roll force based on deep learning[J].Journal of Iron and Steel Research,2019,31(9):805-815.
[14]Wang W Y, Hua H, Zhang B S. Prediction model of rolling force based on KNN[J]. International Core Journal of Engineering, 2020, 6(9): 158-162.
[15]冀秀梅,王龙,高克伟,等.极限学习机在中厚板轧制力预报中的应用[J].钢铁研究学报,2020,32(5):393-399.
Ji X M,Wang L,Gao K W,et al.Application of ELM to predict plate rolling force[J].Journal of Iron and Steel Research,2020,32(5):393-399.
[16]章顺虎,姜兴睿,尤凤翔,等.融合工业大数据的热轧厚板轧制力模型研究[J].精密成形工程,2020,12(2): 8-14.
Zhang S H,Jiang X R,You F X,et al.Investigation on the model of rolling force by integrating industrial big data[J].Journal of Netshape Forming Engineering,2020,12(2): 8-14.
[17]丁敬国,刘方路,于琨,等.基于WOA-ELM-LSTM的非稳态热轧过程轧制力预测[J].钢铁研究学报,2024,36(1):85-94.
Ding J G, Liu F L, Yu K, et al. Prediction of hot rolling force based on WOA-ELM-LSTM in unsteady process [J]. Journal of Iron and Steel Research, 2024, 36(1): 85-94.
[18]李加军.基于孤立森林的多离群点数据检测算法设计[J].现代电子技术,2024,47(5):139-142.
Li J J. Design of multi-outlier data detection algorithm based on isolation forest [J]. Modern Electronics Technique, 2024, 47(5): 139-142.
[19]钱旭盛,朱萌,翟千惠,等. 基于改进孤立森林算法的异常用电行为识别方法 [J]. 沈阳工业大学学报, 2023, 45(6): 601-606.
Qian X S, Zhu M, Zhai Q H, et al. Abnormal electrical behavior recognition method based on improved isolated forest algorithm [J]. Journal of Shenyang University of Technology, 2023, 45(6): 601-606.
[20]Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
[21]Dehghani M, Hublovsk , Trojovsk P. Northern goshawk optimization: A new swarm-based algorithm for solving optimization problems[J]. IEEE Access, 2021, 9: 162059-162080.
[22]陈萱,杨永超,袁博洋,等.NGO-VMD和SSNGO-RF算法在风机齿轮箱故障诊断中的应用[J].湖北民族大学学报(自然科学版),2023,41(4):520-529.
Chen X, Yang Y C, Yuan B Y, et al. Application of NGO-VMD and SSNGO-RF algorithms in fault diagnosis of wind turbine gearboxes[J]. Journal of Hubei Minzu University (Natural Science Edition), 2023, 41(4): 520-529.
[23]包金山,杨定坤,张靖,等.基于特征提取与INGO-SVM的变压器故障诊断方法[J].电力系统保护与控制,2024,52(7):24-32.
Bao J S, Yang D K, Zhang J, et al. Transformer fault diagnosis method based on feature extraction and INGO-SVM[J]. Power System Protection and Control, 2024, 52(7): 24-32.
|