Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Prediction on rolling force of horizontal roller of NGO-RF hot-rolled H-beams based on feature selection
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG335.4+2
year,vol(issue):pagenumber:2025,50(1):122-133
Abstract:

 In order to obtain more accurate rolling force of horizontal roller, the actual rolling parameters of Fujian Luoyuan Minguang Iron and Steel Rolling Mill were collected, and the calculation and preprocessing of relevant parameter were performed to construct a rolling force dataset of horizontal roller for H-beam containing multi-input features and multiple specifications. To effectively predict the rolling force of horizontal roller for H-beam, firstly, the outlier detection and feature selection were conducted by isolation forest algorithm and tree model, and the dataset was divided, using random forest model as the base model for training and validation. Next, the random forest model was optimized by northern goshawk optimization algorithm. Furthermore, the processed test set data of rolling force for H-beam horizontal roller was inputted, and the predicted rolling force values were output. In addition, the constructed model (NGO-RF) was compared with the unoptimized random forest model, support vector machine model, multi-layer perceptron model, convolutional neural network model, as well as support vector machine model and multi-layer perceptron neural network model optimized by northern goshawk optimization algorithm. The results show that the constructed model outperforms all models mentioned above in terms of performance prediction, and it has high accuracy and adaptation. Additionally, the rolling force of new H-beam 588 mm×300 mm×12 mm×20 mm specification products are predicted by using the constructed model. Comparing the predicted values of the model with the actual measured values, the average error is only 6.05%, further confirming that the constructed model can effectively predict the rolling force of H-beams horizontal roller.

 
Funds:
福建省科技厅“揭榜挂帅”成果转化项目(2023T5001);福建省科技重大专项(2022HZ026025)
AuthorIntro:
作者简介:臧德宇(1999-),男,硕士研究生 E-mail:zangdeyu2022@fafu.edu.cn 通信作者:吴 龙(1973-),男,博士,教授 E-mail:smuwl@126.com
Reference:

 [1]  顾波,王娇,白晶.基于热连轧机厚度精度的最优控制研究[J].机床与液压,2018,46(8): 126-128. 


Gu B,Wang J,Bai J.Optimal control of thickness accuracy of hot rolling mill[J].Machine Tool & Hydraulic,2018,46(8): 126-128.

 

[2]  Wang Z H,Zhang D H,Gong D Y,et al.A new data-driven roll force and roll torque model based on FEM and hybrid PSO-ELM for hot strip rolling[J].ISIJ International,2019,59(9):1604-1613.

 

[3]  Liu X,Liu X H,Song M,et al. Theoretical analysis of minimum metal foil thickness achievable by asymmetric rolling with fixed identical roll diameters [J]. Transactions of Nonferrous Metals Society of China,2016,26(2):501-507.

 

[4]  王春华,吕雷.改进型支持向量回归预测模型的轧机轧制力预测[J].传感器与微系统,2017,36(4):65-67,70.

Wang C H, Lyu L. Rolling force prediction of rolling mill based on improved support vector regression prediction model [J]. Transducer and Microsystem Technologies, 2017, 36(4): 65-67, 70.

 

[5]  贺庆强,张勤河,张海龙.应用综合仿真模型构建H型钢轧制力公式[J].重型机械,2008(1):6-10.

He Q Q, Zhang Q H, Zhang H L. Development of rolling force formula for H-beam rolling process by an integrated model [J]. Heavy Machinery, 2008(1): 6-10.

 

[6]  张海龙,张勤河,贺庆强,等.H型钢连轧过程轧制力模型的研究[J].钢铁,2009,44(4):46-49.

Zhang H L, Zhang Q H, He Q Q, et al. Study on continuous rolling force model for H-beam [J]. Iron and Steel, 2009, 44(4): 46-49.

 

[7]  赵景云,臧勇,逄晓男,等.基于流函数的H型钢轧制力能参数模型[J].北京科技大学学报,2013,35(1):112-119.

Zhao J Y, Zang Y, Pang X N, et al. Rolling energetic parameter model of H-beams based on the fowfunction [J]. Journal of University of Science and Technology Beijing, 2013, 35(1): 112-119.

 

[8]  张向军,陈志强,朱凤泉,等.一种H型钢矩形坯热轧开坯的轧制力能校核计算方法[P].中国:CN115544449A,2022-12-30.

Zhang X J, Chen Z Q, Zhu F Q, et al. A method for checking and calculating the rolling force energy of a rectangular billet hot rolling process for H-beam steel [P]. China: CN115544449A, 2022-12-30.

 

[9]  Zhang X D,Yao L,Zhou Z X.Rolling force prediction algorithm based on Bayesian regularization neural network[A]. Proceedings of the 2nd International Conference on Electronics,Network and Computer Engineering (ICENCE 2016) [C].Paris:Atlantis Press,2016.

 

[10]窦博.热连轧轧制力贝叶斯神经网络预测与模型优化[J].金属制品,2017,43(6): 42-48.

Dou B.Prediction of rolling force and model optimization with Bayes neural network[J].Metal Products,2017,43(6): 42-48.

 

[11]Zheng G,Ge L H,Shi Y Q,et al.Dynamic rolling force prediction of reversible cold rolling mill based on BP neural network with improved PSO[A]. Proceedings of 2018 Chinese Automation Congress (CAC) [C].Xi′an:IEEE,2018.

 

[12]魏立新,魏新宇,孙浩,等. 基于改进遗传算法优化SVM的轧制力预报[A]. 第37届中国控制会议论文集[C]. 新泽西州皮斯卡特维: IEEE,2018. 

Wei L X,Wei X Y,Sun H,et al.Rolling force prediction of SVM based on improved genetic algorithm[A].Proceedings of the 37th Chinese Control Conference[C].Piscataway NJ: IEEE,2018.

 

[13]马威,李维刚,赵云涛,等.基于深度学习的热连轧轧制力预测[J].钢铁研究学报,2019,31(9):805-815. 

Ma W,Li W G,Zhao Y T,et al.Prediction of hot-rolled roll force based on deep learning[J].Journal of Iron and Steel Research,2019,31(9):805-815.

 

[14]Wang W Y, Hua H, Zhang B S. Prediction model of rolling force based on KNN[J]. International Core Journal of Engineering, 2020, 6(9): 158-162.

 

[15]冀秀梅,王龙,高克伟,等.极限学习机在中厚板轧制力预报中的应用[J].钢铁研究学报,2020,32(5):393-399.       

Ji X M,Wang L,Gao K W,et al.Application of ELM to predict plate rolling force[J].Journal of Iron and Steel Research,2020,32(5):393-399.

 

[16]章顺虎,姜兴睿,尤凤翔,等.融合工业大数据的热轧厚板轧制力模型研究[J].精密成形工程,2020,12(2): 8-14.

Zhang S H,Jiang X R,You F X,et al.Investigation on the model of rolling force by integrating industrial big data[J].Journal of Netshape Forming Engineering,2020,12(2): 8-14.

 

[17]丁敬国,刘方路,于琨,等.基于WOA-ELM-LSTM的非稳态热轧过程轧制力预测[J].钢铁研究学报,2024,36(1):85-94.

Ding J G, Liu F L, Yu K, et al. Prediction of hot rolling force based on WOA-ELM-LSTM in unsteady process [J]. Journal of Iron and Steel Research, 2024, 36(1): 85-94.

 

[18]李加军.基于孤立森林的多离群点数据检测算法设计[J].现代电子技术,2024,47(5):139-142.

Li J J. Design of multi-outlier data detection algorithm based on isolation forest [J]. Modern Electronics Technique, 2024, 47(5): 139-142.

 

[19]钱旭盛,朱萌,翟千惠,等. 基于改进孤立森林算法的异常用电行为识别方法 [J]. 沈阳工业大学学报, 2023, 45(6): 601-606.

Qian X S, Zhu M, Zhai Q H, et al. Abnormal electrical behavior recognition method based on improved isolated forest algorithm [J]. Journal of Shenyang University of Technology, 2023, 45(6): 601-606.

 

[20]Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5-32.

 

[21]Dehghani M, Hublovsk , Trojovsk P. Northern goshawk optimization: A new swarm-based algorithm for solving optimization problems[J]. IEEE Access, 2021, 9: 162059-162080.

 

[22]陈萱,杨永超,袁博洋,等.NGO-VMD和SSNGO-RF算法在风机齿轮箱故障诊断中的应用[J].湖北民族大学学报(自然科学版),2023,41(4):520-529.

Chen X, Yang Y C, Yuan B Y, et al. Application of NGO-VMD and SSNGO-RF algorithms in fault diagnosis of wind turbine gearboxes[J]. Journal of Hubei Minzu University (Natural Science Edition), 2023, 41(4): 520-529.

 

[23]包金山,杨定坤,张靖,等.基于特征提取与INGO-SVM的变压器故障诊断方法[J].电力系统保护与控制,2024,52(7):24-32. 

Bao J S, Yang D K, Zhang J, et al. Transformer fault diagnosis method based on feature extraction and INGO-SVM[J]. Power System Protection and Control, 2024, 52(7): 24-32.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com