Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization of roll forming process for single-layer solid spherical hinge based on orthogonal test
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG301
year,vol(issue):pagenumber:2025,50(1):148-155
Abstract:

 In order to study the roll forming of single-layer solid spherical hinges, its 3D finite element model was established. The process parameters of spherical hinge roll forming were analyzed by the orthogonal test method, the primary and secondary factors affecting the processing pressure and roundness of spherical hinge were obtained, and the influence laws of different roll forming parameters on the processing quality of spherical hinges were obtained. The results show that in the process of spherical hinge roll forming, the primary factor affecting the processing pressure and roundness of spherical hinge is the feeding amount, the secondary factors are the roller rotate speed and roll forming time. Thus, in order to ensure the processing quality and improve efficiency, appropriate roller rotate speed and feeding amount during spherical hinge roll forming process should be selected to shorten the roll forming time. The optimal process parameters are the roller rotate speed of 4 rad·s-1, the feeding amount of 1 mm, and the roll forming time of 15 s. This research provides theoretical support and practical significance for the design of process parameters and the development of roll forming equipment for single-layer solid spherical hinges.

Funds:
湖南省重点研发计划项目(2023GK2026);湖南省自然科学基金资助项目(2022JJ30260);湖南省教育厅科学研究项目(22C0256)
AuthorIntro:
作者简介:王凯旋(1999-),男,硕士研究生 E-mail:22010301010@mail.hnust.edu.cn 通信作者:王送来(1979-),男,博士,副教授 E-mail:qingfeng0259@163.com
Reference:

 


 

[1]  刘旺欢. 金属橡胶球铰结构的优化设计与疲劳寿命分析 [D]. 湘潭:湘潭大学, 2022.

Liu W H. Optimization Design and Fatigue Life Analysis of Rubber-metal Spherical Hinge Structure [D]. Xiangtan:Xiangtan University, 2022.

 

[2]  Darki S, Raskatov E Y. Analysis of the hot radial forging process according to the finite element method [J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(3-4): 1061-1070.

 

[3]  王排岗, 王晓强, 王浩杰, 等. 42CrMo钢超声滚挤压表面硬度有限元分析及参数优化 [J]. 锻压技术, 2023, 48(3):152-158. 

Wang P G, Wang X Q, Wang H J, et al. Finite element analysis and parameter optimization on surface hardness of ultrasonic rolling for 42CrMo steel [J]. Forging & Stamping Technolohy, 2023, 48(3): 152-158. 

 

[4]  李元辉, 李建军, 王顺超, 等. 铝合金薄板含胶滚压成形工艺建模及实验 [J]. 上海交通大学学报, 2022, 56(4):532-542. 

Li Y H, Li J J, Wang S C, et al. Modeling and experiment on roll-hemming forming process ofaluminum alloy sheet with adhesive [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 532-542. 

 

[5]  Lu K L, Zhao G Y, Guo Z H, et al. Review on multi-pass rolling forming of thin-walled ring with complex section [J]. Journal of Physics: Conference Series, 2024, 2706(1): 12-33.

 

[6]  Cui Y, Xu W L, Yu J M, et al. Multi-objective optimization strategy for plastic forming parameters of variable wall thickness special-shaped plate members [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(7): 273-284.      

 

[7]  肖大志, 樊泽兴, 杨成林. 薄壁环形零件滚压成形研究 [J]. 材料科学与工艺, 2006(1): 75-77. 

Xiao D Z, Fan Z X, Yang C L. Research on roll forming of annular thin-walled parts [J]. Materials Science & Technology, 2006(1): 75-77. 

 

[8]  李留柱, 李智军, 李宏伟, 等. 高温合金薄壁W截面密封环滚压成形壁厚变化研究 [J]. 精密成形工程, 2019, 11(5): 43-49.  

Li L Z, Li Z J, Li H W, et al. Wall thickness variation of a superalloy thin-walled W-seetionseal ring during roll forming [J]. Journal of Netshape Forming Engineering, 2019, 11(5): 43-49. 

 

[9]  葛琪, 黄友剑, 邓娇, 等. 有限元仿真在高速动车组橡胶牵引球铰结构优化中的应用 [J]. 特种橡胶制品, 2021, 42(4): 43-48. 

Ge Q, Huang Y J, Deng J, et al. Application of FEA simulation to structural optimization of traction bushing used for high-speed EMU[J]. Special Purpose Rubber Products, 2021, 42(4): 43-48.

 

[10]刘化民, 杨舒涵, 李义, 等. 推力杆球铰仿生表面改进及有限元分析 [J]. 吉林大学学报(工学版), 2023, 54(9): 2733-2740. 

Liu H M, Yang S H, Li Y, et al. Thrust rod ball hinge bionic surface improvement and finite element analysis [J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 54(9): 2733-2740. 

 

[11]康蔚. 运用载荷作用下转向架橡胶球铰力学分析及疲劳优化 [D]. 长沙:中南大学, 2022.

Kang W. Mechanical Analysis and Fatigue Optimization of Bogie Rubber Ball Hinge Under Operation Load [D]. Changsha:Central South University, 2022.

 

[12]荣继刚, 黄友剑, 唐先贺, 等. 预压量对橡胶球铰综合性能的影响 [J]. 特种橡胶制品, 2006(2): 36-39. 

Rong J G, Huang Y J, Tang X H, et al. Effect of preload on comprehensive properties of rubber ball joints [J]. Special Purpose Rubber Products, 2006(2): 36-39. 

 

[13]陈悦. 橡胶球铰参数化有限元法优化设计研究 [D]. 湘潭:湘潭大学, 2018.

Chen Y. Research on Optimization of Rubber Bushing with Parametric Finite Element Method [D]. Xiangtan:Xiangtan University, 2018.

 

[14]Kar K K, Sharma S D, Kumar P, et al. Analysis of rubber pressure molding technique to fabricate fiber reinforced plastic components [J]. Polymer Composites, 2007, 28(5): 637-649.

 

[15]Le T H, Chan T, Kurokawa Y, et al. Numerical simulation of deformation-induced temperature variations of a rubber ball under cyclic compression [J]. International Journal of Solids and Structures, 2022, 248: 111664.

 

[16]夏红勇. 牵引电机弹性球铰压装工艺 [J]. 电机技术, 2017(3): 63-65.

Xia H Y. Technology of pressing assembly of the elastie ball-hinge of traction motors [J]. Electrical Machinery Technology, 2017(3): 63-65.

 

[17]刘建林, 罗承俊, 廖勇, 等. 基于Abaqus的某球铰翻边工艺仿真 [J]. 科学技术创新, 2021(12): 13-14.

Liu J L, Luo C J, Liao Y, et al. Simulation of a certain ball joint flanging process based on Abaqus [J]. Science and Technology Innovation, 2021(12): 13-14.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com