Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot deformation behavior and hot working diagram of 23MnNiMoCr54 alloy steel for chain ring
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TD527
year,vol(issue):pagenumber:2025,50(1):220-230
Abstract:

 The single pass hot compression experiment was carried out on Gleeble-3500 testing machine to analyze the influence of deformation temperature and strain rate on the hot deformation behavior and microstructure evolution laws of 23MnNiMoCr54 alloy steel. The strain-dependent thermal deformation constitutive equation was established. On this basis, the thermal processing map was drawn to determine the best processing range. The results indicate that the hot deformation behavior of 23MnNiMoCr54 alloy steel has unimodal “dynamic recrystallization” characteristics. The flow stress of 23MnNiMoCr54 alloy steel decreases with the increasing of deformation temperature and the decreasing of strain rate during hot compression. The dynamic recrystallized grains and deformed grains grow at higher deformation temperatures or lower strain rates. The established thermal working diagram shows that the larger rheological instability exists at lower deformation temperature and higher strain rate, and the rheological instability phenomenon is easily to occur. The optimal process parameters of 23MnNiMoCr54 alloy steel in hot processing are the deformation temperature of 1150-1250 ℃ and the stain rate of 0.01-0.1 s-1.

Funds:
国家重点研发计划项目(2022YFB3706901);泰山产业创新领军人才项目;山东省科技型中小企业创新能力提升工程项目(2023TSGC0528)
AuthorIntro:
作者简介:邢兵辉(1997-),男,博士研究生 E-mail:xbh1914861617@163.com 通信作者:黄 亮(1981-),男,博士,教授 E-mail:huangliang@hust.edu.cn
Reference:

 [1]  赵帆,胡昊,刘雅政,等. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报,2022,36(1):130-135.


Zhao F, Hu H, Liu Y Z, et al. Annealing condition control based on the evolution of complex microstructure and surface decarburization in 23MnNiMoCr54 steel[J]. Materials Reports, 2022, 36(1): 130-135.

 

[2]  李硕,方光锦,汪青芳,等. 23MnNiMoCr54钢的热变形行为[J]. 金属热处理,2021,46(5):127-132.

Li S, Fang G J, Wang Q F, et al. Hot deformation behavior of 23MnNiMoCr54 steel[J]. Heat Treatment of Metals, 2021, 46(5): 127-132.

 

[3]  郭晓霞,温慧,李志豪. 高强度矿用圆环链23MnNiMoCr54钢的研发与应用[J]. 金属热处理,2021,46(2):20-25.

Guo X X, Wen H, Li Z H. Development and application of high strength circular chain 23MnNiMoCr54 steel for mining[J]. Heat Treatment of Metals, 2021, 46(2): 20-25.

 

[4]  葛世荣,王俊涛,宋智丽. 刮板输送机技术发展历程(一)——国外技术[J]. 中国煤炭,2024,50(2):1-12.

Ge S R, Wang J T, Song Z L. The development history of scraper conveyor technology (Part one): Foreign technology[J]. China Coal, 2024, 50(2): 1-12.

 

[5]  李明. 掘进机刮板运输机存在的问题及改进设计[J]. 煤炭工程,2016,48(11):134-136.

Li M. Problems and the improved design for roadheader scraper conveyor[J]. Coal Engineering, 2016, 48(11): 134-136.

 

[6]  李峰. 23MnNiMoCr54钢对链条质量的影响[J]. 煤矿机械,2022,43(4):101-102.

Li F. Influence of 23MnNiMoCr54 steel on chain quality[J]. Coal Mine Machinery, 2022, 43(4): 101-102.

 

[7]  郭嵘,梁义维,夏蕊. 煤水介质下圆环链大应变在线监测系统设计[J]. 仪表技术与传感器,2023(3):50-54.

Guo R, Liang Y W, Xia R. Design of large strain online monitoring system of ring chain in coal and water medium[J]. Instrument Technique and Sensor, 2023(3): 50-54.

 

[8]  闫震,王迎春,邵云亮,等. 高强度矿用圆环链腐蚀研究综述[J]. 中国煤炭,2022,48(5):47-53.

Yan Z, Wang Y C, Shao Y L, et al. Review on corrosion of high strength round link mining chain[J]. China Coal, 2022, 48(5): 47-53.

 

[9]  尚可超. 矿用圆环链用23MnNiMoCr54钢的加工工艺研究[J]. 矿山机械,2013,41(7):134-137.

Shang K C. Study on processing technology of steel 23MnNiCrMo54 used for mine round-link chain[J]. Mining & Processing Equipment, 2013, 41(7): 134-137.

 

[10]赵志宏. 矿用圆环链制作工艺研究[J]. 科技风,2018(22):166.

Zhao Z H. Research on manufacturing technology of mining ring chain[J]. Science and Technology Style, 2018(22): 166.

 

[11]赵亚娟,陶涛,田力. 23MnNiMoCr54链条钢焊接断裂原因分析[J]. 物理测试,2014,32(3):46-49.

Zhao Y J, Tao T, Tian L. Fracture analysis on weld of 23MnNiMoCr54 steel chain[J]. Physics Examination and Testing, 2014, 32(3): 46-49.

 

[12]刘峥. 矿用圆环链疲劳断裂失效分析[J]. 金属加工(热加工),2015(11):66-68.

Liu Z. Fatigue fracture failure analysis of mining ring chain[J]. MW Metal Forming, 2015(11): 66-68.

 

[13]尚可超,骆晓炜. Φ34国产23MnNiMoCr54钢圆环链编结工艺研究[J]. 铸造技术,2016,37(6):1255-1257.

Shang K C, Luo X W. Research on knitting process for round-link chain of Φ34 domestic 23MnNiMoCr54 steel[J]. Foundry Technology, 2016, 37(6): 1255-1257.

 

[14]张振民,汪青芳,方光锦,等. 23MnNiMoCr54钢编链开口度大小不一分析[J]. 甘肃冶金,2020,42(2):67-70.

Zhang Z M, Wang Q F, Fang G J, et al. An analysis on the opening degree of 23MnNiMoCr54 steel in braiding chain[J]. Gansu Metallurgy, 2020, 42(2): 67-70.

 

[15]尚可超,杨二亮. 国产23MnNiMoCr54钢圆环链焊接工艺研究[J]. 煤矿机械,2014,35(11):140-142.

Shang K C, Yang E L. Study on welding of domestic steel 23MnNiCrMo54 used for round-link chain[J]. Coal Mine Machinery, 2014, 35(11): 140-142.

 

[16]王维喜,马瑞勇,武兴旺,等. 红外线测温系统在矿用高强度圆环链连续中频热处理中的应用[J]. 金属热处理,2007(5):104-105.

Wang W X, Ma R Y, Wu X W, et al. Application of infrared temperature measurement system in continuous medium frequency heat treatment of high-tensile steel round link chains for mining[J]. Heat Treatment of Metals, 2007(5): 104-105.

 

[17]朱斌, 张楠. 矿用高强度圆环链损伤机理及寿命预测[J]. 辽宁工程技术大学学报(自然科学版),2013,32(11):1493-1496.  

Zhu B, Zhang N. Damage mechanism and life prediction of high-intensity ring chain for mining[J]. Journal of Liaoning Technical University (Natural Science), 2013, 32(11): 1493-1496.

 

[18]高平.R4s级系泊链钢腐蚀疲劳性能研究[D]. 镇江:江苏科技大学,2010.

Gao P. Study on Properties of Corrosion Fatigue of Class R4s Mooring Chain Steel[D]. Zhenjiang: Jiangsu University of Science and Technology, 2010.

 

[19]彭世丹. 高强度矿用紧凑链立环应力腐蚀断裂行为研究[J]. 武汉工程职业技术学院学报,2022,34(3):21-25.

Peng S D. Study on stress corrosion fracture behavior of high strength mine compact chain vertical ring[J]. Journal of Wuhan Engineering Institute, 2022, 34(3): 21-25.

 

[20]孙越,孙勇,杨勇,等. TC21钛合金热压缩本构方程及热加工图[J]. 锻压技术,2023,48(4):242-248.

Sun Y, Sun Y, Yang Y, et al. Constitutive equation and thermal processing map of thermal compression for TC21 titanium alloy [J]. Forging & Stamping Technology, 2023, 48(4): 242-248.

 

[21]王稳,罗锐,苗现华,等. 超超临界火电用奥氏体耐热钢的热变形行为[J]. 塑性工程学报,2018,25(6):154-160. 

Wang W, Luo R, Miao X H, et al. Hot deformation behavior of austenitic heat resistant steel for ultra-supercritical thermal power [J]. Journal of Plasticity Engineering, 2018, 25(6): 154-160.

 

[22]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science Journal, 1979, 13: 187-194.

 

[23]Chen Z Y, Zhang Q, Li Q A, et al. Hot deformation behavior and dynamic precipitation characteristics of Mg-Gd-Nd(-Sm)-Zr alloys[J]. Journal of Materials Research and Technology, 2021, 15: 5582-5596.

 

[24]樊翠林. Fe-15Cr-27Ni-4Al-2Mo-0.6Nb奥氏体耐热钢的热变形行为研究[D]. 洛阳:河南科技大学,2022.

Fan C L. Study on Hot Deformation Behavior of Fe-15Cr-27Ni-4Al-2Mo-0.6Nb Austenitic Heat-resistant Steel[D]. Luoyang: Henan University of Science and Technology, 2022.

 

[25]吴勇. 23MnNiMoCr54钢的热变形及热处理工艺研究[D]. 马鞍山:安徽工业大学,2016.

Wu Y. Hot Deformation Behavior and Heat Treatment Technology of 23MnNiMoCr54[D]. Ma′anshan: Anhui University of Technology, 2016.

 

[26]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258.

 

[27]Han Y, Liu G W, Zou D N, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression[J]. Materials Science and Engineering: A, 2013, 565: 342-350.

 

[28]Son K T, Kim M H, Kim S W, et al. Evaluation of hot deformation characteristics in modified AA5052 using processing map and activation energy map under deformation heating[J]. Journal of Alloys and Compounds, 2018, 740: 96-108.

 

[29]朱强,张自昂,张林福,等. 一种镍钴基高温合金热变形行为研究[J]. 锻压技术,2024,49(7):57-63.

Zhu Q, Zhang Z A, Zhang L F, et al. Study on hot deformation behavior of a Ni-Co-based superalloy [J]. Forging & Stamping Technology, 2024, 49(7): 57-63.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com