[1] 唐远寿,司宇,徐正萌,等.超高强度钢在汽车轻量化中的应用及研究进展[J].金属热处理,2023,48(10):247-254.
Tang Y S, Si Y, Xu Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweight [J]. Heat Treatment of Metals, 2023, 48(10): 247-254.
[2] 徐莉,郑崇嵩,侯聚英,等.车用双相高强钢的动态力学性能及本构模型的对比[J].机械工程材料,2023,47(11):74-80.
Xu L, Zheng C S, Hou J Y, et al. Dynamic mechanical properties and constitutive model contrast of dual-phase high strength steel for vehicles [J]. Materials for Mechanical Engineering, 2023, 47(11): 74-80.
[3] 冯毅,万鑫铭,周佳,等.汽车用先进高强钢板材断裂性能研究进展[J].汽车工程学报,2023,13(3):273-297.
Feng Y, Wan X M, Zhou J, et al. Research progress on fracture properties of advanced high-strength steel sheet for automobiles [J]. Chinese Journal of Automotive Engineering, 2023, 13(3): 273-297.
[4] 周佳,梁宾,万鑫铭,等.汽车用金属板材的材料动态响应与断裂性能研究[J].机械工程学报,2022,58(20):339-349.
Zhou J, Liang B, Wan X M, et al. Research on dynamic response and fracture properties of metal materials for vehicle [J]. Journal of Mechanical Engineering, 2022, 58(20): 339-349.
[5] 朱建琳,王超超,王秋月.基于GISSMO失效准则的DP590双相钢和热成形钢的断裂特性研究[J].塑性工程学报,2024,31(2):163-172.
Zhu J L, Wang C C, Wang Q Y, et al. Research on fracture characteristics of DP590 double-phase steel and hot-formed steel based on GISSMO failure criterion [J]. Journal of Plasticity Engineering, 2024, 31(2): 163-172.
[6] 孔玉强,张晓莹,段朋,等.基于GISSMO断裂失效模型的高强钢落锤压溃仿真分析[J].锻压技术,2024,49(3):230-239.
Kong Y Q, Zhang X Y, Duan P, et al. Simulation analysis of high strength steel drop test based on GISSMO fracture failure model [J]. Forging & Stamping Technology, 2024, 49(3): 230-239.
[7] 张伟,刘华赛,桑贺,等.残余奥氏体对双相钢断裂失效性能的影响[J].塑性工程学报,2023,30(11):185-193.
Zhang W, Liu H S, Sang H, et al. Effects of retained austenite on fracture failure properties of dual-phase steel [J]. Journal of Plasticity Engineering, 2023, 30(11): 185-193.
[8] 方新文,管佳佳.TC4钛合金在准静态拉伸下的本构模型及失效参数[J].机械强度,2022,44(4):831-836.
Fang X W, Guan J J. Constitutive model and failure parameters of TC4 titanium alloy under quasi-static tensile [J]. Journal of Mechanical Strength, 2022, 44(4): 831-836.
[9] GB/T 228.1—2021,金属材料 拉伸试验 第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[10]梁宾,张冲,范吉富,等.金属板材高精度断裂卡片研发及应用[J].汽车工艺与材料,2022(8):28-40.
Liang B, Zhang C, Fan J F, et al. Development and application of high-precision fracture card for sheet metal [J]. Automobile Technology & Material, 2022(8): 28-40.
[11]巢成新,于强,李秋.汽车用先进高强钢本构模型与韧性断裂模型研究进展[J].精密成形工程,2024,16(1):77-86.
Chao C X, Yu Q, Li Q. Research progress on constitutive model and ductile fracture model of advanced high strength steel for automotive applications [J]. Journal of Netshape Forming Engineering, 2024, 16(1): 77-86.
[12]张骥超,连昌伟,韩非.超高强钢材料碰撞失效行为仿真预测技术研究[J].汽车工艺与材料,2023(8):15-20.
Zhang J C, Lian C W, Han F. Research on failure behavior simulation prediction technologies of AHSS under crash condition [J]. Automobile Technology & Material, 2023(8): 15-20.
[13]刘文,张乐乐,茹一帆.基于损伤演化模型的高速列车侧墙碰撞失效分析[J].中南大学学报(自然科学版),2022,53(5):1834-1842.
Liu W, Zhang L L, Ru Y F. Failure analysis of high-speed train sidewall collision based on damage evolution model [J]. Journal of Central South University: Science and Technology, 2022, 53(5): 1834-1842.
[14]罗玉梅,王博,李伟.基于落锤压溃高强双相钢断裂失效模型[J].塑性工程学报,2021,28(9):200-206.
Luo Y M, Wang B, Li W. Fracture failure model of high-strength dual-phase steel based on falling weight collapse [J]. Journal of Plasticity Engineering, 2021, 28(9): 200-206.
[15]郭鹤,张玉华.基于MMC准则的双相高强钢HC820/1180DPD+Z断裂失效模型分析[J].锻压技术,2023,48(10):235-244.
Guo H, Zhang Y H. Analysis on fracture failure model for dual-phase high-strength steel HC820/1180DPD+Z based on MMC criterion [J]. Forging & Stamping Technology, 2023, 48(10): 235-244.
[16]靳阳,胡晓,樊华,等.铌元素对DP980钢断裂性能的影响与应用研究[J].锻压技术,2023,48(10):222-234.
Jin Y, Hu X, Fan H, et al. Research on effect and application of niobium element on fracture performance of DP980 steel [J]. Forging & Stamping Technology, 2023, 48(10):222-234.
|