Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Constitutive model of high-temperature rheological behavior for S55C steel
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2025,50(1):272-280
Abstract:

  The isothermal rheological compression experiments of S55C steel material were conducted by thermo-mechanical simulator machine Gleeble-3180 at deformation temperature of 850-1000 ℃ and strain rate of 0.01-10 s-1, and the high-temperature hot deformation behavior of the material was studied. Then, based on the true stress-true strain curve obtained from the experiment, the influence laws of true strain, deformation temperature and strain rate on rheological stress were analyzed, and an Arrhenius constitutive model with strain compensation of S55C steel was established to analyze the fitting accuracy of the model further. The results show that the plastic deformation part in the hot compression deformation process of S55C steel can be divided into three stages. In the early deformation stage, the rheological stress increases sharply with the increasing of strain, the growth rate of rheological stress slows down in the middle stage of deformation, the material undergoes a struggle between work hardening and dynamic softening, resulting in peak stress after reaching equilibrium, and the rheological stress in the later stage of deformation shows different change trends under different strain rates. At low strain rate, the rheological stress shows the characteristics of decreasing, and the softening form in hot compression deformation is dominated by dynamic recrystallization, while at high strain rates, the rheological stress tends to stabilize within the peak stress range, and the softening form is mainly dynamic recovery. By comparing and analyzing the predicted results of the material constitutive model with the actual experimental data, the correlation coefficient of the Arrhenius constitutive model with strain compensation is 0.94844, and the average absolute relative error is 8.76285%, indicating that the constitutive model can well describe the high-temperature hot deformation behavior of S55C steel.

Funds:
AuthorIntro:
作者简介:周俞廷(1999-),男,硕士研究生 E-mail:15287059738@163.com 通信作者:龙伟民(1966-),男,研究员,博士生导师 E-mail:longwm@zrime.com.cn
Reference:
[1]  史啸峰, 柳萍, 李波, 等. 中碳碳素结构钢S55C的球化退火工艺[J]. 金属热处理, 2021,46(5): 193-195.

Shi X F,Liu P,Li B,et al. Spheroidizing annealing process of medium carbon structural steel S55C[J]. Heat Treatment of Metals,2021,46(5): 193-195.

 

[2]  张晓颖,孙颖,刘修正,等.感应加热温度对滚珠丝杠用S55C钢微观组织及力学性能的影响[J].材料与冶金学报,2024,23(4):391-397.

Zhang X Y,Sun Y,Liu X Z,et al. The effect of induction heating temperature on the microstructure and mechanical properties of S55C steel for ball screws[J]. Journal of Materials and Metallurgy,2024,23(4):391-397.

 

[3]  李永超, 杨玉丹, 卢彩玲, 等. 汽车轮毂用S55C中碳轴承钢的开发与生产实践[J]. 特殊钢, 2022,43(2): 44-47.

Li Y C,Yang Y D,Lu C L,et al. Development and production practice of S55C medium carbon bearing steel for automotive wheel hubs[J].Special Steel, 2022,43(2): 44-47.

 

[4]  Liu Z M, Xing S M, Bao P W, et al. Characteristics of hot tensile deformation and microstructure evolution of twin-roll cast AZ31B magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(5): 776-782.

 

[5]  Qin F C, Qi H P, Kang Y H, et al. Study on constitutive characteristic of as-cast AA6061 alloy under plane strain compression based on orthogonal analysis[J]. Advances in Materials Science and Engineering, 2019(2): 1-11.

 

[6]  Martins J M P T. Calibration of a modified Johnson-Cook model using the virtual fields method and a heterogeneous thermo-mechanical tensile test[J]. International Journal of Mechanical Sciences, 2021, 202-203(1): 106511.

 

[7]  叶建华, 陈明和, 王宁, 等. 基于修正JC模型的TA12钛合金高温流变行为[J]. 中国有色金属学报, 2019,29(4): 733-741.

Ye J H,Chen M H,Wang N,et al. High temperature rheological behavior of TA12 titanium alloy based on modified JC model[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4): 733-741.

 

[8]  李全, 金朝阳. 采用改进和优化的Zerilli-Armstrong本构模型预测AZ80镁合金的高温流变应力[J]. 中国有色金属学报, 2021,31(8): 2091-2100.

Li Q,Jin Z Y. Predicting high-temperature flow stress of AZ80 magnesium alloy using an improved and optimized Zerrilli-Armstrong constitutive model[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2091-2100.

 

[9]  赵劲松, 周昌磊, 黄素霞, 等. 60钢热压缩变形行为及其变参数Arrhenius本构方程[J]. 机械工程材料, 2022,46(11): 86-91.

Zhao J S,Zhou C L,Huang S X,et al. Hot compression deformation behavior of 60 steel and its variable parameter Arrhenius constitutive equation[J]. Materials for Mechanical Engineering, 2022, 46(11): 86-91.

 

[10]白洁, 马瑞, 王亚军, 等. 选区激光熔化GH3536高温合金高温本构模型[J]. 锻压技术, 2023, 48(7): 234-241.

Bai J,Ma R,Wang Y J,et al. High temperature constitutive model for selective laser melting of GH3536 high-temperature alloy[J]. Forging & Stamping Technology, 2023, 48(7): 234-241.      

 

[11]孙红磊, 殷璟, 马瑞, 等. HPb59-1铜合金高温流变行为的本构模型[J]. 塑性工程学报, 2022,29(7): 157-164.

Sun H L,Yin J,Ma R,et al. A constitutive model for the high-temperature rheological behavior of HPb59-1 copper alloy[J]. Journal of Plasticity Engineering,2022, 29(7): 157-164.      

 

[12]田茂森, 陈刚, 沈四喜, 等. 52CrMoV4弹簧钢热变形行为的本构模型[J]. 有色金属工程, 2023,13(3): 49-60.

Tian M S,Chen G,Shen S X,et al. Constitutive model of hot deformation behavior of 52CrMoV4 spring steel[J]. Nonferrous Metals Engineering, 2023, 13(3): 49-60.

 

[13]文超, 孙前江, 徐浩, 等. 基于Arrhenius模型和修正Johnson-Cook模型的TC21钛合金流动应力预测[J]. 塑性工程学报, 2023,30(11): 82-90.

Wen C,Sun Q J,Xu H,et al. Prediction of flow stress in TC21 titanium alloy based on Arrhenius model and modified Johnson-Cook model[J]. Journal of Plasticity Engineering,2023,30(11): 82-90.

 

[14]Lin Y C, Li Q F, Xia Y C, et al. A phenomenological constitutive model for high temperature flow stress prediction of Al-Cu-Mg alloy[J]. Materials Science & Engineering A, 2012, 534(1): 654-662.

 

[15]Lin Y C, Liang Y, Chen M, et al. A comparative study on phenomenon and deep belief network models for hot deformation behavior of an Al-Zn-Mg-Cu alloy[J]. Applied Physics A, 2017, 123(1): 68.

 

[16]刘京, 冯玮, 徐富家, 等. 20CrMnTiH钢的温变形行为及其数学建模[J]. 热加工工艺, 2013,42(16): 77-79.

Liu J,Feng W,Xu F J, et al. Thermal deformation behavior and mathematical modeling of 20CrMnTiH steel[J]. Hot Working Technology, 2013,42(16): 77-79.

 

[17]张健,赵广辉,王顺,等.Q345钢的热加工性研究[J].重型机械,2020(5):70-74.

Zhang J,Zhao G H,Wang S, et al. Research on hot workability of Q345 steel[J]. Heavy Machinery, 2020(5):70-74.

 

[18]李旭, 樊祥泽, 杨庆波, 等. 2195铝锂合金平面应变压缩的流变行为与微观组织[J]. 中国有色金属学报, 2018,28(10): 1980-1990.

Li X,Fan X Z,Yang Q B,et al. Rheological behavior and microstructure of 2195 aluminum lithium alloy under plane strain compression[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(10): 1980-1990.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com