Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Design methods for multi-degree of freedom swing rolling process for copper high-voltage switch contact fingers
Authors: Xiong Wei1 2 Han Xinghui1 2 Zhuang Wuhao2 Yuan Xinhong2 Deng Zushen2 
Unit: 1. School of Materials Science and Engineering Wuhan University of Technology 2. Hubei Key Laboratory of Advanced Technology for Automotive Components Wuhan University of Technology 
KeyWords: multi-DOF swing rolling high-voltage switch contact finger metal flow blank shape flash form 
ClassificationCode:TG306
year,vol(issue):pagenumber:2025,50(2):151-157
Abstract:

Copper contact finger is the core functional structure component of high-voltage switches, and its manufacturing performance directly determines the service performance and service life of high-voltage switches. Therefore, for the copper high-voltage switch contact fingers, the design method of multi-degree of freedom (DOF) swing rolling process was studied. Then, based on the Deform-3D finite element simulation platform, a 3D FE simulation model was established, and the influences of blank shape and flash form on the multi-DOF swing rolling of copper high-voltage switcher contact fingers were investigated and the variation laws of equivalent stress, equivalent strain and forming force during the forming process are revealed. The research results show that the copper high-voltage switch contact finger with good forming effect can be obtained by using the profiled blanks and the vertical flash. Based on the above-mentioned research, the process experiment was finally carried out, and the qualified copper high-voltage switch contact finger samples were obtained, which indicates that the proposed design method for multi-DOF swing rolling process of copper high-voltage switch contact fingers is effective.

Funds:
国家自然科学基金资助项目(U21A20131);教育部创新团队发展计划项目(IRT17R83)
AuthorIntro:
作者简介:熊薇(1998-),女,硕士研究生,E-mail:xiongw1122@163.com;通信作者:韩星会(1979-),男,博士,教授,E-mail:hanxinghuihlp@126.com
Reference:

[1]Deng X B, Hua L, Han X H, et al. Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear[J]. Materials & Design, 2011, 32(3): 1376-1389.


 

[2]雷煜东, 詹梅, 樊晓光, 等. 带筋薄壁构件成形制造技术的发展与展望[J]. 西北工业大学学报, 2022, 40(1): 1-17.

 

Lei Y D, Zhan M, Fan X G, et al. A review on manufacturing technologies of thin-walled components with ribs [J]. Journal of Northwestern Polytechnical University, 2022, 40(1): 1-17.

 

[3]冯文成. 冷摆辗机摆头运动轨迹与成形力的理论分析及试验研究[D]. 北京: 中国机械科学研究总院集团有限公司, 2015.

 

Feng W C. Theoretical Analysis and Experimental Research on Orbital Head Trajectory and Forming Force of Orbital Cold Forming Press[D]. Beijing: China Academy of Machinery Science and Technology Group Co.,Ltd.,2015.

 

[4]车路长, 郭成, 胡亚民, 等. 摆动辗压接触面积系数的分析研究[J]. 锻压机械, 1996(4): 18-21.

Che L C, Guo C, Hu Y M, et al. Analysis and study on the factor of contacting surface in orbital forging process[J]. Metalforming Machinery, 1996(4): 18-21.

 

[5]Hu Y X, Han X H, Hua L, et al. Modeling for warping prediction and control in cold rotary forging of round plate[J]. Journal of Materials Processing Technology, 2023, 313: 117865.

 

[6]Hua L, Han X H. 3D FE modeling simulation of cold rotary forging of a cylinder workpiece[J]. Materials & Design, 2009, 30(6): 2133-2142.

 

[7]金秋, 冯玮. 非回转铝合金薄板零件冷摆辗成形规律研究[J]. 热加工工艺, 2019, 48(9): 125-128,131.

 

Jin Q, Feng W. Research on forming law of cold swing rolling of non-rotary aluminum alloy sheet part[J]. Hot Working Technology, 2019, 48(9): 125-128,131.

 

[8]Zheng Y, Liu D, Yang Y H, et al. Investigation on metal flow during the hot axial closed die rolling process for titanium alloy discs[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 2445-2458.

 

[9]Zhuang W H, Hua L, Han X H, et al. Distribution of microstructure and Vickers hardness in spur bevel gear formed by cold rotary forging[J]. Advances in Mechanical Engineering, 2014(6): 809276.

 

[10]Jiang S. Microstructure and texture of Ti-6Al-4V alloy deformed by rotary forging at elevated temperatures[J]. International Journal of Materials Research, 2020, 111(10): 807-813.

 

[11]Yuan S J, Wang X H, Liu G, et al. The precision forming of pin parts by cold-drawing and rotary-forging[J]. Journal of Materials Processing Technology, 1999, 86(1-3): 252-256.

 

[12]Merklein M, Plettke R, Opel S. Orbital forming of tailored blanks from sheet metal[J]. CIRP Annals, 2012, 61(1): 263-266.

 

[13]Jin Q, Han X H, Hua L, et al. Process optimization method for cold orbital forging of component with deep and narrow groove[J]. Journal of Manufacturing Processes, 2018, 33: 161-174.

 

[14]Hetzel A, Merklein M, Lechner M. Influence of a local short-term heat treatment on the formability of orbital formed functional components[J]. Procedia Manufacturing, 2021, 53: 72-79.

 

[15]Gu B T, Han X H, Hua L. Processing design and optimization on rotary forging of thin-walled structure[J]. Thin-Walled Structures, 2021, 162: 107567.

 

[16]Han X H, Zeng F F, Zhuang W H, et al. An innovative rotary rolling-forging process for manufacturing fork ring with extreme geometry[J]. Journal of Materials Processing Technology, 2023, 322: 118160.

 

[17]Han X H, Jin Q, Hua L. Research on cold orbital forming of complex sheet metal of aluminum alloy[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061013.

 

[18]Han X H, Hua L, Zhuang W H, et al. Process design and control in cold rotary forging of non-rotary gear parts [J]. Journal of Materials Processing Technology, 2014, 214(11): 2402-2416.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com