[1]赵清江,郭怡晖,梁宾,等.22MnB5高强度钢板材的断裂失效准则研究[J].塑性工程学报,2020,27(4):132-137.
Zhao Q J,Guo Y H,Liang B,et al.Research on fracture criterion of 22MnB5 high-strength steel plate[J].Journal of Plasticity Engineering,2020,27(4):132-137.
[2]郭鹤,张玉华.基于MMC准则的双相高强钢HC820/1180DPD+Z断裂失效模型分析[J].锻压技术, 2023, 48(10):235-244.
Guo H,Zhang Y H. Analysis on fracture failure model for dual-phase high-strength steel HC820/1180DPD+Z based on MMC criterion[J].Forging & Stamping Technology, 2023, 48(10):235-244.
[3]刘立熙,朱健,李志强.基于应力三轴度和罗德参数的6061和7075铝合金材料断裂失效分析[J].实验力学, 2017, 32(3):342-350.
Liu L X,Zhu J,Li Z Q.Fracture failure analysis of 6061 and 7075 aluminum alloy based on stress triaxiality and Lode parameter[J]. Journal of Experimental Mechanics, 2017, 32(3):342-350.
[4]朱建琳, 王超超, 王秋月. 基于Gissmo 失效准则的DP590双相钢和热成形钢的断裂特性研究[J]. 塑性工程学报, 2024, 31 (2):163-172.
Zhu J L, Wang C C, Wang Q Y. Research on fracture characteristics of DP590 double-phase steel and hot-formed steel based on Gissmo failure criterion [J]. Journal of Plasticity Engineering, 2024, 31 (2): 163-172.
[5]徐晨阳,张骥超,连昌伟.基于GISSMO损伤模型的DH590高强钢断裂失效行为研究[J].塑性工程学报,2021,28(6):68-74.
Xu C Y,Zhang J C,Lian C W.Study on fracture failure behavior of DH590 high strength steel based on GISSMO damage model[J].Journal of Plasticity Engineering,2021,28(6):68-74.
[6]梁宾,赵岩,赵清江,等.基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J].机械工程学报, 2019, 55(18):53-62.
Liang B, Zhao Y, Zhao Q J,et al.On the prediction of failure in 6016 aluminum alloy sheet by Gissmo damage model[J].Journal of Mechanical Engineering,2019, 55(18):53-62.
[7]马浩林.考虑损伤的热冲压薄壁结构抗撞性能研究[D].大连:大连理工大学,2024.
Ma H L. The Investigation of Crash Worthiness for Hot Stamping Thin-wall Structure Considering Damage[D]. Dalian:Dalian University of Technology,2024.
[8]Neukamm F, Feucht M, Bischoff M. On the application of continuum damage models to sheet metal forming simulations[J]. Ibai Publishing, 2008(4): 616-629.
[9]黄建科.金属成形过程的细观损伤力学模型及韧性断裂准则研究[D].上海:上海交通大学,2009.
Huang J K. Study on Meso-damage Model and Ductile Fracture Criterion in Metal Forming Processes[D]. Shanghai:Shanghai Jiao Tong University,2009.
[10]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].
GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems[S].
[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[12]王连轩,张秀宏,牛月鹏.高强IF钢应变硬化模型研究及在仿真对标中的应用[J].四川冶金,2021,43(4):38-41.
Wang L X, Zhang X H,Niu Y P. Study on strain hardening models of HS-IF steel and application in simulation correlation[J]. Sichuan Metallurgy, 2021, 43(4):38-41.
[13]陈继恩.基于应力三轴度的材料失效研究[D].武汉:华中科技大学,2012.
Chen J E. Research of Material Failure Basic on Stress Triaxiality[D].Wuhan:Huazhong University of Science and Technology,2012.
[14]Brvik T,Hopperstad O S,Berstad T. On the influence of stress triaxiality and strain rate on the behavior of a structural steel.Part II. Numerical study [J]. European Journal of Mechanics-A/Solids, 2003, 22(1):15-32.
[15]Teng X,Wierzbicki T. Evaluation of six fracture models in high velocity perforation[J]. Engineering Fracture Mechanics,2006,73(12):1653-1678.
|