Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on fracture failure behavior for 750L large beam steel based on GISSMO failure model
Authors: Yin Jili Ding Mingkai Zhan Yingzi Jin Guangyu Cao Guangming Sun Peng 
Unit: Research Institute of Iron and Steel  Shandong Iron and Steel Group Rizhao Co. Ltd. 
KeyWords: 750L large beam steel fracture failure constitutive mode GISSMO fracture failure model stress triaxiality 
ClassificationCode:TG146
year,vol(issue):pagenumber:2025,50(2):250-255
Abstract:

The dynamic tensile experiments of 750L large beam steel were conducted to investigate its fracture failure behavior, the true stress-true strain curves were obtained by the Swift-Hockett-Sherby model and the plastic flow behavior of the material was effectively characterized by a multi-linear elastic-plastic material constitutive model. Then,the experimental analysis on the fracture failure behavior under five typical stress states was conducted, including shear, uniaxial tension, center hole, R5 notch and bulging. Furthermore, the fracture failure strain and the average stress triaxiality were obtained, and the GISSMO curve was fitted. Finally,based on the experimental data, the GISSMO fracture model was benchmarked by finite element simulation. The results show that when the tensile process of each specimen is simulated by the GISSMO fracture criterion model of 750L large beam steel based on the GISSMO fracture criterion, the error between tensile force and fracture displacement does not exceed 2.67%, and the simulation results are consistent with the experimental results, indicating that the material card can effectively predict the fracture failure process of 750L large beam steel.

Funds:
山东泰山产业领军人才专项(tscx202312011)
AuthorIntro:
作者简介:殷继丽(1993-),女,硕士,工程师,E-mail:2803708366@qq.com
Reference:

[1]赵清江,郭怡晖,梁宾,等.22MnB5高强度钢板材的断裂失效准则研究[J].塑性工程学报,2020,27(4):132-137.


 

Zhao Q J,Guo Y H,Liang B,et al.Research on fracture criterion of 22MnB5 high-strength steel plate[J].Journal of Plasticity Engineering,2020,27(4):132-137.

 

[2]郭鹤,张玉华.基于MMC准则的双相高强钢HC820/1180DPD+Z断裂失效模型分析[J].锻压技术, 2023, 48(10):235-244.

 

Guo H,Zhang Y H. Analysis on fracture failure model for dual-phase high-strength steel HC820/1180DPD+Z based on MMC criterion[J].Forging & Stamping Technology, 2023, 48(10):235-244.

 

[3]刘立熙,朱健,李志强.基于应力三轴度和罗德参数的6061和7075铝合金材料断裂失效分析[J].实验力学, 2017, 32(3):342-350.

 

Liu L X,Zhu J,Li Z Q.Fracture failure analysis of 6061 and 7075 aluminum alloy based on stress triaxiality and Lode parameter[J]. Journal of Experimental Mechanics, 2017, 32(3):342-350.

 

[4]朱建琳, 王超超, 王秋月. 基于Gissmo 失效准则的DP590双相钢和热成形钢的断裂特性研究[J]. 塑性工程学报, 2024, 31 (2):163-172. 

 

Zhu J L, Wang C C, Wang Q Y. Research on fracture characteristics of DP590 double-phase steel and hot-formed steel based on Gissmo failure criterion [J]. Journal of Plasticity Engineering, 2024, 31 (2): 163-172.

 

[5]徐晨阳,张骥超,连昌伟.基于GISSMO损伤模型的DH590高强钢断裂失效行为研究[J].塑性工程学报,2021,28(6):68-74.

 

Xu C Y,Zhang J C,Lian C W.Study on fracture failure behavior of DH590 high strength steel based on GISSMO damage model[J].Journal of Plasticity Engineering,2021,28(6):68-74.

 

[6]梁宾,赵岩,赵清江,等.基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J].机械工程学报, 2019, 55(18):53-62.

 

Liang B, Zhao Y, Zhao Q J,et al.On the prediction of failure in 6016 aluminum alloy sheet by Gissmo damage model[J].Journal of Mechanical Engineering,2019, 55(18):53-62. 

 

[7]马浩林.考虑损伤的热冲压薄壁结构抗撞性能研究[D].大连:大连理工大学,2024.

 

Ma H L. The Investigation of Crash Worthiness for Hot Stamping Thin-wall Structure Considering Damage[D]. Dalian:Dalian University of Technology,2024.

 

[8]Neukamm F, Feucht M, Bischoff M. On the application of continuum damage models to sheet metal forming simulations[J]. Ibai Publishing, 2008(4): 616-629. 

 

[9]黄建科.金属成形过程的细观损伤力学模型及韧性断裂准则研究[D].上海:上海交通大学,2009.

 

Huang J K. Study on Meso-damage Model and Ductile Fracture Criterion in Metal Forming Processes[D]. Shanghai:Shanghai Jiao Tong University,2009. 

 

[10]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].

 

GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems[S].

 

[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

 

[12]王连轩,张秀宏,牛月鹏.高强IF钢应变硬化模型研究及在仿真对标中的应用[J].四川冶金,2021,43(4):38-41.

 

Wang L X, Zhang X H,Niu Y P. Study on strain hardening models of HS-IF steel and application in simulation correlation[J]. Sichuan Metallurgy, 2021, 43(4):38-41.

 

[13]陈继恩.基于应力三轴度的材料失效研究[D].武汉:华中科技大学,2012.

 

Chen J E. Research of Material Failure Basic on Stress Triaxiality[D].Wuhan:Huazhong University of Science and Technology,2012. 

 

[14]Brvik T,Hopperstad O S,Berstad T. On the influence of stress triaxiality and strain rate on the behavior of a structural steel.Part II. Numerical study [J]. European Journal of Mechanics-A/Solids, 2003, 22(1):15-32.

 

[15]Teng X,Wierzbicki T. Evaluation of six fracture models in high velocity perforation[J]. Engineering Fracture Mechanics,2006,73(12):1653-1678. 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com