Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Dynamic recrystallization behavior of 40CrNi4Mo1V steel
Authors: Li Pengyang1  Li Shijie1  Liu Jiawei2  Zhou Leyu2  Jiang Bo1 
Unit: 1.School of Materials Science and Engineering  University of Science and Technology Beijing    2.China Academy of Machinery Beijing Research Institute of Mechanical & Electrical Technology Co.  Ltd. 
KeyWords: 40CrNi4Mo1V steel  thermal compression test  true stress-true strain curves  activation energy of thermal deformation  volume fraction of dynamic recrystallization 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2025,50(3):77-88
Abstract:

 Thermal compression experiments were conducted on 40CrNi4Mo1V steel in extruded and electroslag states by using thermal simulation tester Gleeble-1500, and the true stress-true strain curves were measured. Then, the dynamic recrystallization behavior at the strain rates of 0.01-10 s-1,the temperatures of 1050-1250 ℃, and the reduction amount of 60% was systematically studied. Based on the modified Avrami equation, a dynamic recrystallization kinetics model was established. The results indicate that dynamic recrystallization phenomenon of the steel is significant under high temperature and low strain rate. Through linear regression calculation, the thermal deformation activation energy of the extruded and electroslag states are 511.11 and 493.35 kJ·mol-1, respectively. The fitting degree of the dynamic recrystallization volume fraction prediction model of 40CrNi4Mo1V steel in the extruded and electroslag states is 0.96 and 0.95, respectively, and the experimental value are in good agreement with the predicted values. Based on the model analysis, the optimized deformation temperature ranges of the two experimental steels at different strain rates are determined. By comparison, it is found that under the same deformation conditions, the electroslag steel is easier to trigger dynamic recrystallization due to its lower thermal deformation activation energy.

Funds:
国防基础科研计划(JCKY2022208A002)
AuthorIntro:
作者简介:李鹏洋(2001-),男,硕士研究生 E-mail:lipengyang2023@163.com 通信作者:蒋波(1990-),男,博士,副教授 E-mail:jiangbo@ustb.edu.cn
Reference:

 


 


 [1]刘宁,旷五洲,陈俊. 含钒高锰LNG储罐用钢热变形行为及组织演变研究[J]. 轧钢,2023,40(5):25-31.

 

Liu N, Kuang W Z, Chen J. Study on hot deformation behaviors and microstructure evolution of Vbearing high Mn steel for LNG tank[J]. Steel Rolling, 2023, 40(5): 25-31.

 

[2]王艺南. 904L超级奥氏体不锈钢热变形行为及动态再结晶模拟[D]. 沈阳:东北大学,2021.

 

Wang Y N. Research on Hot Deformation Behavior of 904L Super Austenitic Stainless Steel and Dynamic Recrystallization Simulation[D]. Shenyang: Northeastern University,2021.

 

[3]赵志光.30Cr2Ni2Mo钢热变形微观组织演变及其神经网络模型的研究[D].太原:太原科技大学,2023.

 

Zhao Z G. Study on Microstructure Evolution and Its Neural Network Models of 30Cr2Ni2Mo Steel in Hot Deformations[D]. Taiyuan: Taiyuan University of Science and Technology, 2023.

 

[4]苟春梅,董静,崔丹丹. 34CrNiMo6钢的高温流变行为及热加工图[J]. 锻压技术,2023,48(2):233-240.

 

Gou C M, Dong J, Cui D D. High temperature rheological behavior and thermal processing diagram for 34CrNiMo6 steel[J]. Forging & Stamping Technology, 2023, 48(2): 233-240.

 

[5]吴寅杰,孙国胜,李顺强,等. 40CrNiMo钢淬火组织调控及其对力学性能的影响[J]. 轧钢,2024,41(1):13-19.

 

Wu Y J, Sun G S, Li S Q, et al. Control of quenched microstructure of 40CrNiMo steel and the correlation with mechanical properties[J]. Steel Rolling,2024, 41(1): 13-19.

 

[6]邹志鹏,徐东,郑冰,等. 34CrNi3MoV钢的热变形行为[J]. 锻压技术,2023,48(3):211-218.

 

Zou Z P, Xu D, Zheng B, et al. Thermal deformation behavior on 34CrNi3MoV steel[J]. Forging & Stamping Technology, 2023, 48(3): 211-218.

 

[7]吴俊平,潘中德,梁新增,等. 合金元素Cr、Ni和Mo对钒微合金钢动态再结晶行为的影响[J].金属热处理,2019,44(8):64-68.

 

Wu J P, Pan Z D, Liang X Z, et al. Effect of Cr, Ni and Mo on dynamic recrystallization behavior of vanadium microalloying steel[J]. Heat Treatment of Metals, 2019, 44(8): 64-68.

 

[8]潘龙博,储滔,张硕,等. 30CrNi3MoV钢动态再结晶行为及其模型的构建[J]. 金属热处理,2021,46(7):23-30.

 

Pan L B, Chu T, Zhang S, et al. Dynamic recrystallization behaviors of 30CrNi3MoV steel and its mathematical models[J]. Heat Treatment of Metals, 2021, 46(7): 23-30.

 

[9]Galiev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Materials & Design, 1985 (6): 1563-1573.

 

[10]Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ3[J]. Journal of Light Metals, 1986 (5): 2366-2372.

 

[11]杨鑫,曹善鹏,孙有政,等. 挤压态6082铝合金热变形行为及组织[J]. 锻压技术,2023,48(11):238-248.

 

Yang X, Cao S P, Sun Y Z, et al. Thermal deformation behavior and microstructure on extruded 6082 aluminum alloy [J]. Forging & Stamping Technology, 2023, 48(11): 238-248.

 

[12]Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57(9): 2748-2756.

 

[13]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science Journal, 1978, 13(3-4): 187-194.

 

[14]Serajzadeh S, Taheri A K. Prediction of flow stress at hot working condition[J]. Mechanics Research Communications, 2003, 30(1): 87-93.

 

[15]叶晓瑜. 冷却工艺对热轧V微合金化钢板组织性能的影响[J],轧钢,2015,32(1):27-30.

 

Ye X Y. Influence of cooling process on microstructure and properties of Vmicroalloyed hot rolled plate[J]. Steel Rolling, 2015, 32(1): 27-30.

 

[16]朱强,张自昂,张林福,等. 一种镍钴基高温合金热变形行为研究[J]. 锻压技术,2024,49(7):57-63.

 

Zhu Q, Zhang Z A, Zhang L F, et al. Study on hot deformation behavior of a NiCobased superalloy[J]. Forging & Stamping Technology, 2024, 49(7): 57-63.

 

[17]张肖佩佩,吴晓东,周少荣. 18CrNiMo7-6齿轮钢的动态再结晶和亚动态再结晶行为及其动力学模型[J]. 机械工程材料,2024,48(11):29-36.

 

Zhang X P P, Wu X D, Zhou S R. Dynamic recrystallization and metadynamic recrystallization behavior and its dynamic model of 18CrNiMo7-6 gear steel[J]. Materials and Mechanical Engineering, 2024, 48(11): 29-36.

 

[18]蒋波,董正强,霍朝霞,等. 轴承套圈用钢42CrMo的热变形行为[J]. 材料热处理学报,2014,35(12):121-127.

 

Jiang B, Dong Z Q, Huo Z X, et al. Hot deformation behavior of 42CrMo steel for bearing ring[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 121-127.

 

[19]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

 

[20]杨杰,刘光旭,王文莹,等. 热挤压对FGH96镍基粉末高温合金微观组织的影响[J]. 中国冶金,2021,31(8):40-48.

 

Yang J, Liu G X, Wang W Y, et al. Effect of hot extrusion on microstructure for nickelbased superalloy FGH96[J]. China Metallurgy, 2021, 31(8): 40-48.

 

[21]方旭东,李阳,韩培德,等. TG700C合金管材热挤压工艺参数对峰值挤压力的影响[J]. 轧钢,2015,32(4):27-29.

 

Fang X D, Li Y, Han P D, et al. Influence of hot extrusion process parameters on the peak extrusion force of TG700C alloy tube[J]. Steel Rolling, 2015, 32(4): 27-29.

 

[22]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5): 684-691.

 

[23]Kim S I, Lee Y, Byon S M. Study on constitutive relation of AISI 4140 steel subject to large strain at elevated temperatures[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 84-89.

 

[24]Kong L X, Hodgson P D, Wang B. Development of constitutive models for metal forming with cyclic strain softening[J]. Journal of Materials Processing Technology, 1999, 89(18): 44-50.

 

[25]闫飞,娄军魁,韩绍根,等. 含NbB贝氏体钢的热加工变形行为[J]. 河南冶金,2022,30(6):6-9.

 

Yan F, Lou J K, Han S G, et al. Hot work deformation behavior of NbB bainite containing steel[J]. Henan Metallurgy, 2022, 30(6): 6-9.

 

[26]Zhang C, Zhang L W, Shen W F, et al. Study on constitutive modeling and processing maps for hot deformation of medium carbon CrNiMo alloyed steel[J]. Materials & Design, 2016, 90: 804-814.

 

[27]罗锐,陈乐利,曹赟,等. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J].材料导报,2020,34(20):20118-20122.

 

 

Luo R, Chen L L, Cao Y, et al. Deformation characteristics and dynamic recrystallization model of CrMo high temperature ferritic steel[J]. Materials Reports, 2020, 34(20): 20118-20122.

 

[28]张昊天. 镁合金管材旋转剪切挤压成形工艺开发及变形行为研究[D]. 沈阳:东北大学,2022.

 

Zhang H T. Development of Rotation Shear Extrusion Forming Process for Magnesium Alloy Pipe and Research on Deformation Behavior[D]. Shenyang: Northeastern University, 2022.

 

[29]李宁. 低合金高强度钢热变形行为及微观组织演变研究[D]. 哈尔滨:哈尔滨工程大学,2021.

 

Li N. Study on Hot Deformation Behavior and Microstructure Evolution of High Strength Low Alloy Steel[D]. Harbin: Harbin Engineering University, 2021.

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com