Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Manufacture technology of large-sized hollow billet for powder superalloy
Authors: Yang Xiuqing1 Zhou Cheng′en2 Li Yuanyuan1  Lei Bingwang1 
Unit: 1.Inner Mongolia North Heavy Industry Group Corp.Ltd. 2.College of Science  Inner Mongolia  University of Technology 
KeyWords: powder superalloy  small-sized hollow ingot  upsetting for billetmaking  hollow billet  large-sized tubes 
ClassificationCode:TG376.2
year,vol(issue):pagenumber:2025,50(3):197-204
Abstract:

 The use of large-scale powder superalloy extrusion tube of Φ600 mm×Φ350 mm (outer diameter × inner diameter) to prepare advanced aero-engine drum shafts and other ring (cylinder) parts has become a new research direction today. For the problem that small-scale hollow powder superalloy ingot of Φ660 mm × Φ315 mm × 1070 mm (outer diameter × inner diameter × length) could not be used as the billet for direct extrusion of the 900 series, a superalloy ingot structure of “jacket cladding+built-in mandrel+insulation pad” was developed, and the metal flow law of closed upsetting for superalloy was studied. At the same time, the influence degrees of different materials and process parameters on the shape and size of the billet were analyzed by numerical simulation technology. The results show that when cladding the hollow billet of powder superalloy,the mandrel of 40Cr steel with the length of 750 mm,the base and end cover of steel 15 with the thickness of 100 mm, and the hard jacket of steel 15 with the thickness of 30 mm are selected. After heating and closed upsetting, there is no cracking on the surface of powder alloy. After removing the mandrel, the inner hole diameter of the billet is ≥Φ355 mm, which meets the requirements of the extrusion process.

Funds:
AuthorIntro:
作者简介:杨秀清(1966-),女,学士,正高级工程师 E-mail:yangxiuqing360b@126com
Reference:

 [1]张安琴,王江,张林嘉.航空发动机先进材料发展现状和趋势研究[J].内燃机与配件, 2024(14):130-136.


 


Zhang A QWang JZhang L J. Researchon development status and trends and advanced materials for aircrafe engines [J].Internal Combustion Engine & Spare Parts, 2024(14):130-136.


 


[2]郭鸿镇,宁永权.矢志航空特种锻造的技术创新与产业发展[J].锻造与冲压, 2022(21):28-29.


 


Guo H Z, Ning Y Q. Commitment to technological innovation and industrial development of aerospace special forging[J]. Forging & Metalforming, 2022(21): 28-29.


 


[3]刘剑箫.粉末高温合金FGH4096高温成形行为及组织演化规律研究[D].北京:中国机械科学研究总院集团有限公司,2023.


 


Liu J X. Research on High-temperature Forming Behavior and Microstructure Evolution Law of Powder Superalloy FGH4096[D]. Beijing:China Academy of Machinery Science and Technology Group Co,Ltd, 2023.


 


[4]张强.镍基高温合金粉末氧化行为及合金组织与性能研究[D]. 北京:北京科技大学,2023.


 


Zhang Q. Research on Oxidation Behavior, Microstructure and Properties of Nickel-based Superalloy Powder[D]. Beijing: University of Science and Technology Beijing, 2023.


 


[5]张习祎.热挤压态FGH96合金热变形行为及变形机理研究[D]. 西安:西安建筑科技大学,2023.


 


Zhang X Y. Research on Thermal Deformation Behavior and Deformation Mechanism of Hot-extruded FGH96 Alloy[D]. Xi′an:Xi′an University of Architecture and Technology, 2023.


 


[6]罗运芬.新型镍基高温合金热处理工艺研究[J].机械工业标准化与质量, 2023(9):36-38.


 


Luo Y F. Research on heat treatment process of new nickelbased superalloys[J]. Standardization & Quality of Machinery Industry, 2023(9):36-38.


 


[7]孔维俊.中温形变对新型镍基高温合金组织和力学行为影响的研究[D]. 兰州:兰州理工大学,2023.


 


Kong W J. Research on the Influence of Medium-temperature Deformation on the Microstructure and Mechanical Behavior of a New Nickel-based Superalloy[D]. Lanzhou:Lanzhou University of Technology, 2023.


 


[8]郭秩维,赵作鹏,胡绪腾.粉末高温合金FGH4099疲劳小裂纹扩展试验[J].航空发动机, 2024(4):1-7.


 


Guo Z W Zhao Z P Hu X TExperimental investigation on small crack growth behavior of powder metallurgy superalloy FGH99[J].Aircraft Engine, 2024(4):1-7.


 


[9]马向东,程俊义,龙安平,.新型镍基粉末高温合金的微观组织和力学性能[J].粉末冶金技术, 2023, 41(5):434-441.


 


Ma X D, Cheng J Y, Long A P, et al.Microstructure and mechanical properties of a novel nickelbased powder superalloy[J]. Powder Metallurgy Technology, 2023, 41(5):434-441.


 


[10]胥国华,黄瑾,刘诗梦,.新型钴基高温合金长期时效组织演化研究[J].材料研究与应用, 2023, 17(1):1-8.


 


Xu G H, Huang J, Liu S M, et al. Research on microstructural evolution of a new cobalt-based superalloy during long-term aging[J]. Materials Research and Application, 2023, 17(1): 1-8.


 


[11]温红宁,金俊松,滕庆,.新型镍基粉末高温合金包覆挤压数值模拟与工艺窗口优化[J].中国有色金属学报,2022,32(9):2664-2679.


 


Wen H N, Jin J S, Teng Q, et al. Numerical simulation and process window optimization of cladding extrusion for a new nickel-based powder superalloy[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2664-2679.


 


[12]段继平,唐湘林,盛俊英,.热挤压态FGH95合金热变形特性[J].粉末冶金技术, 2024, 42(1):36-44.


 


Duan J P, Tang X L, Sheng J Y, et al. Thermal deformation characteristics of hot-extruded FGH95 alloy[J]. Powder Metallurgy Technology, 2024, 42(1): 36-44.


 


[13]杜占江,丛相州,孙立明,.耐高温镍基合金管件制备工艺及组织性能[J].锻压技术,2024,49(8):67-72.


 


Du Z JCong X ZSun L Met al. Preparation process and microstructure properties of hightemperature resistant nickelbased alloy pipe fittings[J]. Forging & Stamping Technology202449(8)67-72.


 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com