Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Compression-torsion forming and fine-grain strengthening process for high-temperature and high-strength special steel
Authors: Liu Kehong  Zhang Ruifeng  Ge Dongwei  Wang Yingying  Liu Xiaorong 
Unit: Inner Mongolia North Heavy Industries Group Corp.Ltd. 
KeyWords: compression-torsion forming dynamic recrystallization  Nb-rich phase grain refinement  local stress concentration 
ClassificationCode:TG316
year,vol(issue):pagenumber:2025,50(3):212-218
Abstract:

 For the problems of lower yield strength and impact energy in high-temperature and high-strength special steel, it was found that the main cause was the local stress concentration in the material, which was caused by the microstructures such as gains with overly large sizes and aggregated distribution of large-sized Nb-rich phase. Through systematic microstructural characterization, the grain coarsening mechanisms and the dynamic recrystallization behavior were elucidated. Based the synergistic shear effect theory of compression-torsion composite deformation, a multi-directional shear stress field was introduced in uniaxial deformation system, establishing an strain path conducive to dynamic recrystallization successfully. A novel fine-grain strengthening process was developed through optimization of compression-torsion forming process parameters and heat treatment system. Experimental results demonstrate that the compression-torsion process with severe deformation can achieve the  simultaneous grain ultra-refinement (grain size is Grade 6.0) and the homogeneous dispersion of Nb-rich phases, resulting in enhanced mechanical properties with the yield strength of 941 MPa and the impact energy of 27.6 J.

Funds:
国防基础科研计划(JCKY2022208A002)
AuthorIntro:
作者简介:刘科虹(1980-),男,硕士,正高级工程师 E-mail:13847203575@163.com
Reference:

 [1]Kemin X, Zhen W, Yan L. FEM analysis of cylinder twist-compression deformation regularity[J]. Journal of Materials Processing Technology, 1997,69(1-3):148-151.


 

[2]丁林高.TC4 合金热扭压成形数值模拟[D]. 合肥:合肥工业大学,2007.

 

Ding L G. Numerical Simulation of Heat Pressure and Torsion of TC4 Alloy[D]. Hefei:Hefei University of Technology, 2007.

 

[3]弭光宝,薛克敏,张早明,等. 压扭变形工艺及在材料改性中的应用[J]. 哈尔滨工业大学学报,2009,41(11):169-172.

 

Mi G B, Xue K M, Zhang Z M, et al. Compresstwist process and its application in property modification of material[J]. Journal of Harbin Institute of Technology, 2009,41(11):169-172.

 

[4]韩瑞. 压扭变形AZ31镁合金微观组织和织构演变的研究[D].太原:中北大学,2023.

 

Han R. Microstructure and Texture Evolution of AZ31 Magnesium Alloy During Compressiontorsion Deformation[D].Taiyuan: North University of China,2023.

 

[5]薛克敏,许锋,李萍, 等.20CrMnTi 钢晶粒压扭变形的均匀化[J].塑性工程学报,2010,17(1):18-21.

 

Xue K M, Xu F, Li P, et al. Research on high pressure torsion forming for the homogenization of the grains of 20CrMnTi steel[J]. Journal of Plasticity Engineering, 2010,17(1):18-21.

 

[6]贾蕾琛. 镁合金压扭变形组织性能调控研究[D]. 太原:中北大学,2024.

 

Jia L C. Research on Microstructure and Properties Control of Magnesium Alloy During Compressiontorsion Deformation[D]. Taiyuan: North University of China,2024.

 

[7]Wang F,Sandlbes S,Diehl M, et al. In situ observation of collective grainscale mechanics in Mg and Mgrare earth alloys[J]. Acta Materialia, 2014,80:77-93.

 

[8]Dolzhenko P,Tikhnoova M,Belyakov A,et al. Dynamicrecrystallization of a highMn TWIP steel during multipleforging at 800 ℃[A].Proceeding of the Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures[C]. Tomsk, 2018.

 


[9]魏中顺,蓝永庭,贾勉,等.扭转变形制备的梯度结构镁合金微结构与力学性能研究进展[J].热加工工艺, 2024,53(10):1-9.

 

Wei Z S,Lan Y T,Jia M, et al. Research progress on microstructure and mechanical properties of gradient structure magnesium alloys prepared by torsion deformation[J]. Hot Working Technology, 2024,53(10):1-9.

 

[10]吴玉成,姜宏伟,胡园,等.多向锻造对M50钢一次碳化物破碎机制的影响[J].中国冶金,2020,30(9):98-103,135.

 

Wu Y C,Jiang H W,Hu Y, et al.Effect of multi-direction foring on carbide evolution of M50 steel[J].China Metallurgy, 2020,30(9):98-103,135.

 

[11]牛犇,庞玉华,孙琦,等. 三维剧烈塑性法轧制F45MnVS超细晶钢棒及细化机理[J]. 锻压技术,2023,48(1):149-157.

 

Niu B,Pang Y H,Sun Q,et al.Three dimensional severe plastic rolling of F45MnVS ultrafine grain steel rod and its refining mechanism [J]. Forging & Stamping Technology,2023,48(1): 149-157.

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com