Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Crack failure analysis of P92 seamless steel pipe
Authors: Liu Xiaorong Liu Kehong Ge Dongwei Yang Wenqing Tian Guangrong Zhang Ruifeng 
Unit: Inner Mongolia Northern Heavy Industry Group Corp.Ltd. 
KeyWords: P92 seamless steel pipe  crack  δ ferrite  oxidation  BN inclusions 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2025,50(3):219-224
Abstract:

 In the production of P92 seamless steel pipes by extrusion process, the refection wave intensive area for inner wall defect of seamless steel pipe was analyzed in many aspects, and based on macroscopic inspection, the surface and depth of the cracking areas were observed. Then, the microscopic fracture morphology characteristics were mastered by fracture scanning electron microscope analysis, and the non-metallic inclusions, cracks and matrix microstructure characteristics were clarified by metallographic inspection. Furthermore, the causes of cracks were analyzed, and it was found that a large amount of δ-ferrite phase was generated in the steel pipe during the normalizing process. When subjected to stress, the martensitic structure was brittle, and small cracks were easily generated in the δ-ferrite with poor plasticity. In particular, the ripening of M23C6 carbide around δ-ferrite reduced the grain boundary strength of the material. At the same time, the granular BN inclusions in the form of aggregates in the molten steel led to matrix discontinuity, which further aggravated the expansion of small cracks. Therefore, the heating temperature and time of the billet should to be controlled within a reasonable range during heat treatment. 

Funds:
AuthorIntro:
作者简介:刘晓蓉(1993-),女,硕士,工程师 E-mail:708899608@qq.com
Reference:

 [1]刘福广,李太江,梁军,等.高温时效对P92钢焊接接头显微组织和力学性能的影响[J].中国电机工程学报, 2011(14):121-126.


 

Liu F G, Li T J, Liang J, et al. Effect of thermal aging on microstructure and mechanical properties of P92 steel weld joints[J].Proceedings of the CSEE, 2011(14):121-126.

 

[2]段宝玉,刘宗昌,白雅琼,等.P92钢的过冷奥氏体等温转变曲线及显微组织[J].机械工程材料,2016,40(12):16-20.

 

Duan B Y, Liu Z C, Bai Y Q, et al. Undercooled austenite isothermal transformation diagram and microstructure of P92 steel[J]. Materials for Mechanical Engineering,2016,40 (12):16-20.

 

[3]刘野,赵勇桃,刘宗昌,等.热处理对P92钢组织及硬度的影响[J].金属热处理,2017,42(1):76-79.

 

Liu Y, Zhao Y T, Liu Z C, et al. Effect of heat treatment on microstructure and hardness of P92 steel[J]. Heat Treatment of Metals,2017,42(1):76-79.

 

[4]李勇, 马佳林, 王万里,等. 服役后P92钢管不同硬度区的显微结构及拉伸性能[J]. 金属热处理, 2024, 49 (10):140-147.

 

Li Y, Ma J L, Wang W L, et al. Microstructure and tensile properties of different hardness regions in asserved P92 steel pipe[J]. Heat Treatment of Metals, 2024, 49(10):140-147.

 

[5]包汉生,程世长,刘正东,等.化学成分和热处理温度对T122耐热钢中δ-铁素体含量的影响[J].钢铁,2009, 44 (12): 74-78.

 

Bao H S, Cheng S C, Liu Z D, et al. Effect of chemical composition and heat treatment temperature on δFerrite content in T122 heat resistant steel[J].Iron and Steel,2009, 44 (12): 74-78.

 

[6]GB/T 10561—2023,钢中非金属夹杂物含量的测定标准评级图显微检验法[S].

 

GB/T 10561—2023,Determination of content of nonmetallic inclusions in steel—Micrographic method using standard diagrams[S].

 

[7]胡福勇,申俊杰,赵庆权,等.B元素含量对9Cr铁素体耐热钢组织和蠕变性能的影响[J].热加工工艺,2021,50(18):51-55.

 

Hu F Y, Shen J J, Zhao Q Q, et al. Effects of boron element content on microstructure and creep properties of 9Cr ferritic heatresistant steel[J].Hot Working Technology,2021,50(18): 51-55.

 

[8]张帆,任安超,夏艳花,等.BN型易切削钢中夹杂物析出规律及对性能的影响[A].中国金属学会.第十二届中国钢铁年会论文集——6.先进钢铁材料[C].北京,2019.

 

Zhang F,Ren A C,Xia Y H, et al. Smelting and performance research of BNtype automotive cutting steel[A].The Chinese Society for Metals.Proceedings of the 12th CSM Steel Congress——Advanced Iron & Steel Materials[C]. Beijing,2019.

 

[9]白银,陈正宗,刘正东,等.蒸汽温度对G115钢氧化行为的影响[J].钢铁研究学报,2020,32(1):52-59.

 

Bai Y,Chen Z Z,Liu Z D, et al. Effect of temperature on steam oxidation behavior of G115 steel[J].Journal of Iron and Steel Research,2020,32(1):52-59.

 

[10]GB/T 6394—2017,金属平均晶粒度测定方法[S].

 

GB/T 6394—2017, Determination of estimating the average grain size of metal[S].

 

[11]GB/T 13298—2015,金属显微组织检验方法[S].

 

GB/T 13298—2015,Inspection methods of microstructure for metals[S].

 

[12]赵义瀚,赵成志,王健楠,等.δ铁素体形成机制以及对马氏体耐热钢冲击功的影响[J].钢铁,2013,48(4):70-75.

 

Zhao Y H,Zhao C Z,Wang J N, et al. Forming mechanism of δferrite and its effect on martensite heatresistant steel impact energy[J].Iron and Steel,2013,48(4):70-75.

 

[13]张国忠,窦志超,王正,等.P92无缝钢管内表面裂纹分析及工艺优化[J].特殊钢,2023,44(2):65-69.

 

Zhang G Z, Dou Z C, Wang Z, et al. Innersurface cracks analysis and process optimization of P92 seamless steel pipe[J].Special Steel,2023,44(2):65-69.

 

[14]Cai G J, Andrén H O, Svensson L E. Effect of cooling after welding on microstructure and mechanical properties of 12 Pct Cr steel weld metals [J].Metallurgical & Materials Transactions A, 1997,28: 1417-1428.

 

[15]方红喆.P92钢缺口试样在蒸汽环境下的蠕变行为研究[D].北京:华北电力大学(北京),2023.

 

Fang H Z. Study on Creep Behavior of P92 Notched Specimens in Steam Environment[D]. Beijing:North China Electric Power University(Beijing),2023.

 

[16]戴长清,田富强,轩福贞.超超临界锅炉管道用T92/P92钢蠕变性能[J].压力容器,2010,27(3):40-45.

 

Dai C Q,Tian F Q, Xuan F Z. Creep properties of T92/P92 steel for boiler pipes of USC power plants[J].Pressure vessel technology,2010,27(3):40-45.

 

[17]王敬忠,涂凯,包汉生,等.超超临界电站用含Nb马氏体/奥氏体耐热钢的合金化现状[J].中国冶金, 2024, 34(6):26-35.

 

Wang J Z, Tu K, Bao H S, et al. Alloying status of martensite/austenite heatresistant steel containing Nb forultrasupercritical power station[J].China Metallurgy, 2024, 34(6):26-35.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com