[1]王倩, 王卫良, 刘敏, 等. 超(超)临界燃煤发电技术发展与展望[J]. 热力发电, 2021, 50(2): 1-9.
Wang Q, Wang W L, Liu M, et al. Development and prospect of (ultra) supercritical coalfired power generation technology[J]. Thermal Power Generation, 2021, 50(2): 1-9.
[2]纪世东, 周荣灿, 王生鹏, 等. 700 ℃等级先进超超临界发电技术研发现状及国产化建议[J]. 热力发电, 2011, 40(7): 86-88.
Ji S D, Zhou R C, Wang S P, et al. Research and development status of advanced ultra supercritical power generation technology at 700 ℃ level and suggestions for localization[J]. Thermal Power Generation, 2011, 40(7): 86-88.
[3]刘入维, 肖平, 钟犁, 等. 700 ℃超超临界燃煤发电技术研究现状[J]. 热力发电, 2017, 46(9): 1-8.
Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultrasupercritical coalfired power generation technology[J]. Thermal Power Generation, 2017, 46(9): 1-8.
[4]张涛, 郝丽婷, 田峰, 等. 700 ℃超超临界火电机组用高温材料研究进展[J]. 机械工程材料, 2016, 40(2): 1-6.
Zhang T, Hao L T, Tian F, et al. Research progress on high temperature materials for 700 ℃ ultrasupercritical coalfired unit[J]. Materials for Mechanical Engineering, 2016, 40(2): 1-6.
[5]毛健雄. 700 ℃超超临界机组高温材料研发的最新进展[J]. 电力建设, 2013, 34(8): 69-76.
Mao J X. Latest development of hightemperature metallic materials in 700 ℃ ultrasupercritical units[J]. Electic Power Construction, 2013, 34(8): 69-76.
[6]王岩,李吉东,谷宇,等.工业化生产N06625镍基合金板材组织性能[J].锻压技术,2024,49(3):47-51,93.
Wang Y,Li J D,Gu Y,et al.Microstructure and properties on N06625 nickelbased alloy plate produced in industrialization [J]. Forging & Stamping Technology,2024,49(3):47-51,93.
[7]赵远, 岳庚新. 700 ℃超超临界火力发电机组高温压力管道用材研究进展[J]. 焊管, 2016, 39(9): 26-29.
Zhao Y, Yue G X. Research progress of high temperature pressure material used for 700 ℃ ultrasupercritical coalfired power unit[J]. Welded Pipe and Tube, 2016, 39(9): 26-29.
[8]杨成. 镍铁基高温合金GH2107组织热稳定性和力学性能的研究[D]. 沈阳:沈阳理工大学, 2016.
Yang C. The Research of the Thermal Stability and Mechanical Properties on the NiFe Base Superalloy GH2107[D]. Shenyang:Shenyang Ligong University,2016.
[9]袁勇,党莹樱,杨珍, 等. 700 ℃先进超超临界机组末级过热器用新型镍铁基高温合金的组织与性能[J].机械工程材料, 2020,44(1):44-50.
Yuan Y, Dang Y Y, Yang Z, et al. Microstructure and properties of NiFebased superalloy for 700 ℃ advanced ultra supercritical unit final superheater[J]. Materials For Mechanical Engineering, 2020,44(1):44-50.
[10]GB/T 2281—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 2281—2021,Metallic materials—Tensile testing—Prat 1:Method of test at room temperature[S].
[11]GB/T 229—2020,金属材料夏比摆锤冲击试验方法[S].
GB/T 229—2020,Metallic materials—Charpy pendulum impact test method[S].
[12]GB/T 2311—2018,金属材料布氏硬度试验第1部分:试验方法[S].
GB/T 2311—2018,Metallic materials—Brinell hardness—Part 1:Test method[S].
[13]GB/T 10561—2023, 钢中非金属夹杂物含量的测定 标准评级图显微检验法[S].
GB/T 10561—2023, Determination of content of nonmetallic inclusions in steel-Micrographic method using standard diagrams[S].
[14]张涛, 卫志刚, 田力男, 等. 700 ℃等级超超临界燃煤锅炉用金属材料应用分析[J]. 内蒙古电力技术, 2015, 33(5): 20-25.
Zhang T, Wei Z G, Tian L N, et al. Metal materials application analysis of 700 ℃ level advanced ultrasupercritical coalfired boiler[J]. Inner Mongolia Electric Power, 2015, 33(5): 20-25.
[15]GB/T 6394—2017,金属平均晶粒度测定方法[S].
GB/T 6394—2017,Determination of estimating the average grain size of metal[S].
[16]Bhadeshia H. Models for the elementary mechanical properties of steel welds[J]. Bookinstitute of Materials, 1997, 650(1): 229-284.
[17]Hal E O. The deformation and ageing of mild steel:Ⅲ Discussion of results[J]. Physical Society Proceedings Section B, 1951, 64(6): 495-502.
[18]Liu Y, Li Z, Jiang Y X, et al. The microstructure evolution and properties of a CuCrAg alloy during thermalmechanical treatment[J]. Journal of Materials Research, 2017, 32(7): 1324-1332.
[19]Sun M X, Xu Y, Du W B. Influence of coiling temperature on microstructure, precipitation behaivors and mechanical properties of a low carbon Ti microalloyed steel[J]. Metals, 2020, 10(9): 1173.
[20]雍岐龙.钢铁结构材料中的第二相[M]. 北京:冶金工业出版社,2006.
Yong Q L. Secondary Phases in Steels[M]. Beijing:Metallurgical Industry Press, 2006.
|